% % % D-MATH Numerische Mathematik I SS 2002 % % % % Serie 9 - Tips % % % % Diese Datei fasst die Matlab-Funktionen fuer die Aufgabe 3 zusammen. % % % %%%%%%%%%%%%%%%%%%%%% Aufgabe 3 ->skript aufgabe3.m <-%%%%%%%%%%%%%%%%%%%%%%%%%% maxit = 12; % Anzahl der Iterationen R1 = zeros(maxit,1); D1 = zeros(maxit,1); R2 = zeros(maxit,1); D2 = zeros(maxit,1); x = ??? % Initialisierung for k=1:maxit % Newton-Raphson-Verfahren % Hier Newton-Raphson programmieren D1(k) = norm(f(x)); % Residuum der Normalenglgn R1(k) = norm(g(x)); % Residuum in den Messwerten end; x = ??? % Initialisierung for k=1:maxit % mit sym. Matrix-Update % Hier Newton mit sym. Matrix-Update programmieren D2(k) = norm(f(x)); % Residuum der Normalenglgn R2(k) = norm(g(x)); % Residuum in den Messwerten end; x % Ausgabe Ergebnis figure(1); % Plot norm(g(x)) plot(1:maxit,R1,1:maxit,R2); figure(2); % Plot norm(f(x)) semilogy(1:maxit,D1,1:maxit,D2); %%%%%%%%%%%%%%%%%%%%%%%% Aufgabe 3 ->function g.m <-%%%%%%%%%%%%%%%%%%%%%%%%%%%% function erg = g(x); % Berechnet das Residuum des ueberbestimmten Systems g(x) = 0: % g_k(x) = z(t_k; x) - z_k, k=1, ..., 9 % mit x := [a_1, a_2, a_3 ]' t = [ 0; .5; 1; 1.5; 2; 3; 5; 8; 10]; z = [3.85; 2.95; 2.63; 2.33; 2.24; 2.05; 1.82; 1.80; 1.75]; erg = x(1) + x(2)*exp(x(3)*t) - z; %%%%%%%%%%%%%%%%%%%%%%%% Aufgabe 3 ->function Dg.m <-%%%%%%%%%%%%%%%%%%%%%%%%%%% function erg = Dg(x); % Berechnet die Jacobimatrix des ueberbestimmten Systems g(x) = 0 % Dg_(k,i) = dg_k / dx_i % wobei g_k(x) = z(t_k; x) - z_k, k=1, ..., 9 % mit x := [a_1, a_2, a_3 ]' t = [ 0; .5; 1; 1.5; 2; 3; 5; 8; 10]; z = [3.85; 2.95; 2.63; 2.33; 2.24; 2.05; 1.82; 1.80; 1.75]; erg = [ones(9,1), exp(x(3)*t), x(2)*t.*exp(x(3)*t) ]; %%%%%%%%%%%%%%%%%%%%%%%% Aufgabe 3 ->function f.m <-%%%%%%%%%%%%%%%%%%%%%%%%%%%% function erg = f(x) % Berechnet den Wert der Normalengleichungen % (Noch zu vervollstaendigen) erg = ??? %%%%%%%%%%%%%%%%%%%%%%%% Aufgabe 3 ->function Df.m <-%%%%%%%%%%%%%%%%%%%%%%%%%%% function erg = Df(x); % Berechnet die Jacobimatrix der Normalengleichungen % (Noch zu vervollstaendigen) ... erg = ??? %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%