Diverse Integrale mit Lösungen (ohne Integrationskonstanten) Die Lösungen wurden kontrolliert mit: |\^/| Maple 7 (SUN SPARC SOLARIS) ._|\| |/|_. Copyright (c) 2001 by Waterloo Maple Inc. \ MAPLE / All rights reserved. Maple is a registered trademark of <____ ____> Waterloo Maple Inc. | Type ? for help. 56) > int(1/(3*x^2-2*x+4),x); 1/2 1/2 1/11 11 arctan(1/22 (6 x - 2) 11 ) 57) > int((6*x-7)/(3*x^2-7*x+11),x); 2 ln(3 x - 7 x + 11) 58) > int(1/(2-3*x-4*x^2)^(1/2),x); 1/2 1/2 arcsin(8/41 41 (x + 3/8)) 59) > int(1/(1+x+x^2)^(1/2),x); 1/2 arcsinh(2/3 3 (x + 1/2)) 60) > int((2*a*x + b)/(a*x^2 + b*x + c)^(1/2),x); 2 1/2 2 (a x + b x + c) 61) > int((x+3)/(4*x^2+4*x+3)^(1/2),x); 2 1/2 1/2 1/4 (4 x + 4 x + 3) + 5/4 arcsinh(2 (x + 1/2)) 62) > int(x*exp(x),x); x exp(x) - exp(x) 63) > int(x*ln(x),x); 2 2 1/2 x ln(x) - 1/4 x 64) > int(x*sin(x),x); sin(x) - x cos(x) 65) > int(ln(x),x); x ln(x) - x 66) > int(arcsin(x),x); 2 1/2 x arcsin(x) + (1 - x ) 67) > int(ln(x-1),x); ln(x - 1) (x - 1) - x + 1 68) > int(x^n*ln(x),x); x^(n + 1)ln(x)/(n + 1) - x^(n + 1)/(n + 1)^2 69) > int(x*arctan(x),x); #+1,-1 Trick 2 1/2 x arctan(x) - 1/2 x + 1/2 arctan(x) * 70) > int(arcsin((x/(x+1))^(1/2)),x); 1/2 / 1 \1/2 1/2 1/2 x |-----| (x - arctan(x )) / x \1/2 \x + 1/ arcsin(|-----| ) x - ------------------------------------- \x + 1/ / x \1/2 |-----| \x + 1/ #mein Versuch diff(arcsin((x/(x+1))^(1/2))*x - 2*(x+1)^(5/2)/5 + 2*(x+1)^(3/2)/3,x); * 71) > int(arcsin(x)/x^2,x); arcsin(x) 1 - --------- - arctanh(-----------) x 2 1/2 (1 - x ) 82) > int(x^(1/2)/(x^(3/2)+1),x); 3/2 2/3 ln(x + 1) 83) > int((x^(3/2)-x^(1/3))/(6*x^(1/4)),x); 13 -- 9/4 12 2/27 x - 2/13 x * 86) > int(sin(x)^3,x); 2 - 1/3 sin(x) cos(x) - 2/3 cos(x) diff(-sin(x)^2*cos(x)-2*cos(x)^3+cos(2*x)/2,x); 89) > int(cos(x)^2,x); 1/2 cos(x) sin(x) + 1/2 x # cos(x)^2 = ( 1 + cos(2*x) )/2 verwenden # => 1/4 sin(2*x) + 1/2 x => sin(2*x) = ... 95) > int(sin(x)/(1+sin(x)),x); 2 -------------- + 2 arctan(tan(1/2 x)) tan(1/2 x) + 1 #Silver Bullet aka Rationalisierungsformel 96) > int(cos(x)/(1+cos(x))^2,x); 3 1/2 tan(1/2 x) - 1/6 tan(1/2 x) 97) > int(1/(1+cos(x))^2,x); 3 1/6 tan(1/2 x) + 1/2 tan(1/2 x)