Bestäuberverhalten und Pflanzenevolution

"aktuelle Stunde" Populations und Evolutionsbiologie, 4.2.04 Florian Schiestl

Orchid pollination

rewarding species deceptive species

Gymnadenia

Platanthera

Thelymitra

Calochilus

Important features of pollination by sexual deception:

- Floral odour is most important for attracting the pollinator sex pheromone mimicry.
- Pollination is highly specific.

Basic concept of (Batesian) mimicry

Wickler (1968)

Mimic (imitates model-signals)

Questions:

- 1) Mechanisms of pollinator attraction
- 2) Evolutionary dynamics between orchids and pollinators: impact of orchids on pollinators
- 3) Odour communication and speciation

Methods: Gas chromatography with electroantennograpic detection (GC-EAD); gas chromatography – mass spectrometry (GC-MS)

Behavioural tests with pollinator-insects

- 1) Mechanisms of pollinator attraction
- Sex pheromone of the pollinator species
- Attractive orchid odour
- 2) Evolutionary dynamics
- 3) Speciation

Where is the female sex pheromone of *N. cryptoides* produced?

Which are the electrophysiologically active compounds in the odour samples?

Compound identification

2-ethyl-5-propyl-1,3-cyclohexandione - "Chiloglottone"

Chiloglottis - bioassay: attractiveness of Chiloglottone

Summary 1

- In the thynnine wasp *N. cryptoides,* the female sex pheromone consists of only one (!) compound, which is produced in the head.
- The orchid *Chiloglottis trapeziformis* produces the same compound in its floral odour.

Europe: *Ophrys,* pollinated by solitary bees

- *O. sphegodes:* Flowers attract pollinator with 14 compounds (alkanes and alkenes).
- Female bees produce the same compounds, in similar proportions, as sex pheromone.

(Schiestl, Ayasse et al. 1999)

- 1) Mechanisms of pollinator attraction
- 2) Evolutionary dynamics impact
- How pollinators avoid sexually deceptive orchids.
- What are the impacts for orchid and pollinator fitness?
- 3) Speciation

Wasps do not avoid individual flowers but locations with flowers

Orchids (presented sequentially in the same spot)

- Are pollinator-males able to discriminate between their females and orchid flowers?
- Are males able to find their wingless females in the presence of orchids?

Can males discriminate between sex pheromone and orchid floral odour?

Can males discriminate between sex pheromone and orchid floral odour?

Do males pick up females that call in an orchid patch?

Arms race!

 selection on increased discrimination in operator
 refinement of signals in mimic;

Summary 2

- Europe: pollinators avoid individual flowers; Australia: pollinators do not avoid individual orchids, but the areas where orchids flower; they are unable to discriminate between the odour of orchid flowers and their females.
- Orchids may harm their pollinators, since males are not able to find their females within an orchid patch. Arms race scenario.

- 1) Mechanisms of pollinator attraction
- 2) Evolutionary dynamics impact
- 3) Odour communication and speciation
- how is evolutionary change imaginable?

Important features for speciation:

- Species are interfertile: specificity in pollination is responsible for reproductive isolation.
- Odour is the key stimulus for specific pollinator attraction: it is directly linked to reproductive success and isolation.

Tow allopatric (with non-overlapping distribution) orchids with the same pollinator species:

Chiloglottis trapeziformis

Chiloglottis valida

GC-EAD recordings using floral odour of two allopatric orchid species with one pollinator (*Neozeleboria cryptoides*)

Two closely related, sympatric (overlapping distribution) orchids with distinct pollinator species

Chiloglottis trilabra

Chiloglottis reflexa

GC-EAD recordings with floral odour of the two sympatric orchid spp. with two pollinators

Summary 3

- Allopatric orchids with the same pollinator species may emit the same attractive odour.
- Sympatric orchids with different pollinators may share active compounds but produce distinct compounds as well.
- Small changes in odour emission may trigger speciation – radiation in orchids may have been a quick process via "stepwise acquiring of new pollinators".