KAPITEL 15 : Kernspaltung

15.1	Anwendung der Kernenergie
15.2	Anwendung der Kernspaltung
15.3	Kernspaltungsreaktor
15.4	Radioaktiver Abfall und Entsorgungskonzept
15.5	Atombombe (Kernspaltungsbombe)
15.6	Strahlendosis

15.1 Anwendung der Kernenergie

Gewinnung von Kernenergie: 1. induzierte Kernspaltung

2. Kernfusion

Historische Bemerkungen:

• 1934: Meitner, Hahn und Strassmann beginnen mit ihrer Forschung an Transuraniumelementen

1938/39: Entdeckung der Kernspaltung von Uran und Thorium: Hahn, Strassmann, Meitner, Frisch

1938: Lise Meitner (österreichische Staatsbürgerin, Professorin in Berlin) flieht nach Schweden und hat durch briefliche Anregungen wesentlich zur Entdeckung der Kernspaltung beigetragen.

1939: Meitner und Frisch liefern erste theoretische Deutung der Kernspaltung

Otto Hahn

Otto Hahn: Nobelpreis 1944:

"for the discovery of the fission of heavy nuclei"

2. Dez. 1942 : Chicago (E. Fermi): 1. Uran-Graphit Reaktor wurde kritisch → gesteuerte Kettenreaktion

Lise Meitner

1942 - 1945: 1. Atombombe in USA unter Leitung von Oppenheimer entwickelt

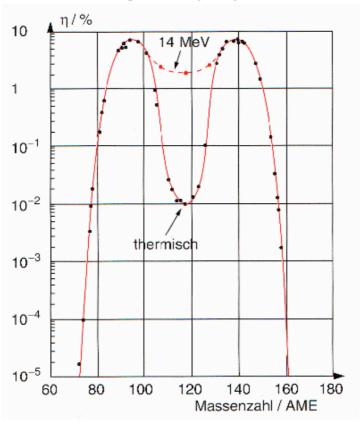
16.7.1945: in Wüste von New Mexico getestet

6.8.1945: Hiroshima (U)

erster Einsatz 9.8.1945: Nagasaki (Pu)

- Friedliche Nutzung der induzierten Kernspaltung zur Energiegewinnung: 27.6.1954: Kernkraftwerk in Obninsk (bei Moskau)
- 1.11.1952: Test der Wasserstoffbombe auf dem Bikini-Atoll
 - → 1. unkontrollierte Kernfusionsreaktion realisiert (USA) 830 mal Hiroshima Bombe

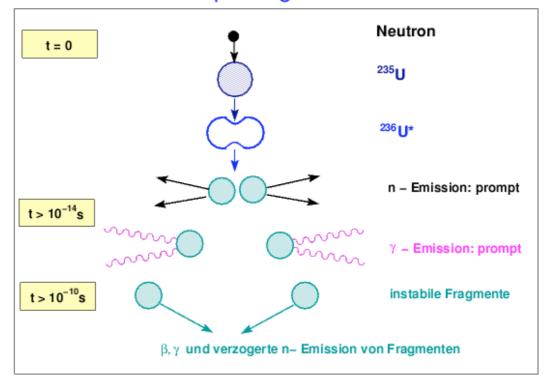
Gesteuerte Kernfusion zur Energiegewinnung bis heute noch nicht gelungen

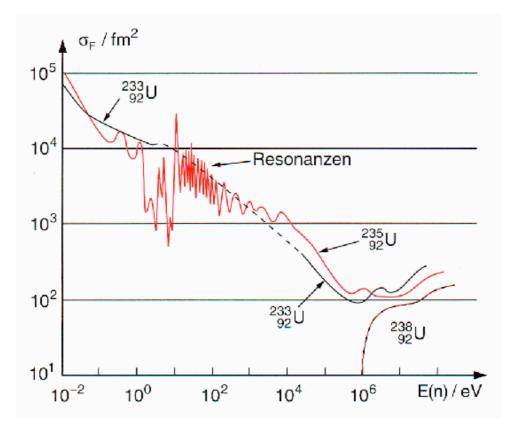

15.2 Anwendung der Kernspaltung

• Neutroneninduzierte Kernspaltung des $^{235}_{92}U$:

$$^{235}_{92}U + n \rightarrow ^{236}_{92}U^* \rightarrow ^{36}_{36}Kr + ^{56}_{56}Ba + \overline{2.43n} + 200 \, MeV$$

Bisher ca. 300 Isotope bekannt, die als Spaltprodukte auftreten können


Verteilung der Spaltprodukte


⇒ grösste W'keit für Massenverhältnis 2:3

Neutronenemission nach β -Zerfall: verzögerte n \approx 0.65% der gesamten Neutronenemission \rightarrow zur Steuerung von Kernspaltungsreaktoren

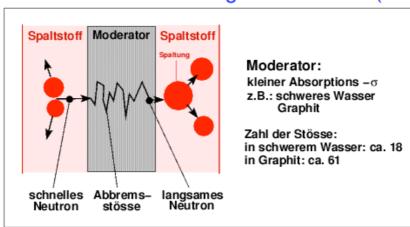
Zeitlicher Ablauf einer Spaltung:

• Spaltungsquerschnitt $\sigma({\bf U},{\bf n},f)$ als Funktion der kinetischen Energie der Neutronen für $^{238}_{92}{
m U},~^{235}_{92}{
m U}$ und $^{233}_{92}{
m U}$

Kettenreaktion

Für n-induzierte Spaltung: $\sigma \sim E_n^{-1/2}$ $^{235}_{92}U$: durch thermische n gespalten

freiwerdende Neutronen: <2.43>, $< E_{\rm n}> \sim 2\,{\rm MeV}$


- → wenn abgebremst, induzieren wieder Spaltung
- → Kettenreaktion

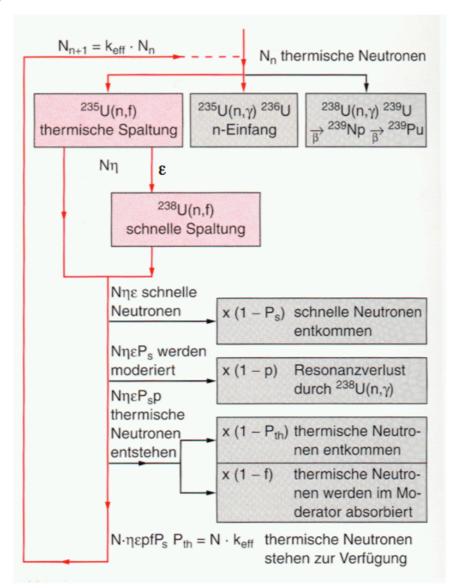
Multiplikationsfaktor der Kettenreaktion:

$$k = \frac{N_{n+1}}{N_n}$$

 $N_{n+1},N_n\dots$ Anzahl der im spaltbaren Material absorbierten therm. Neutronen der (n+1)- und n-ten Generation

- ullet Natürliches Uran besteht aus $^{238}{
 m U}$ und 0.7% $^{235}{
 m U}$
 - erzeugen der Kettenreaktion durch
 - Anreicherung des Isotops ²³⁵U
 - Einsatz von Moderatoren: muss n vor Zusammenstoss mit ^{235}U auf Energie unterhalb der Resonanzenergie abbremsen (\sim 7.5 eV)

ullet Freigesetzte Kernspaltungsenergie $(^{235}{
m U})$


12 MeV

 $\begin{array}{ccccc} E_{\rm kin} \ {\rm der} \ {\rm Kerne} & : & 167 \ {\rm MeV} \\ {\rm Prompte} \ n & : & 5 \ {\rm MeV} \\ {\rm Prompte} \ \gamma & : & 6 \ {\rm MeV} \\ {\rm verz\"{o}gerte} \ \gamma & : & 6 \ {\rm MeV} \\ \beta^- \ {\rm Strahlung} & : & 8 \ {\rm MeV} \\ \end{array}$

nutzbare Energie = 192 MeV totale Energie = 204 MeV

Neutrinos

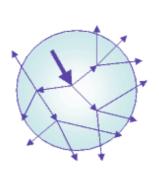
 Lebenszyklus von N_n thermischen Neutronen von einer Spaltgeneration zur nächsten:

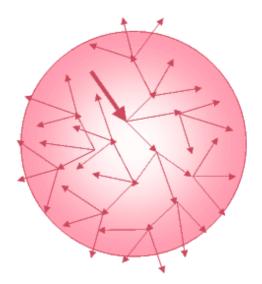
ullet Thermische ${
m n}$ für die Spaltung der (n+1)-ten Generation:

$$N_{n+1} = N_n \cdot \eta \cdot \varepsilon \cdot p \cdot f \cdot P_s \cdot P_{\text{th}} = k_{\text{eff}} \cdot N_n$$

 $k_{\rm eff}=1$: stationärer Betrieb

 $k_{\rm eff} < 1$: Kettenreaktion geht aus


 $k_{\rm eff}>1$: Zahl der Neutronen wächst exponentiell an


• Grenzfall: ∞ ausgedehnter Reaktor

$$k_{\infty} = \eta \cdot \varepsilon \cdot p \cdot f$$
 Vierfaktorformel

 Abhängigkeit der Kettenreaktion von der Masse des spaltbaren Materials:

k = 1: kritische Masse

k < 1: unterkritische Masse

k > 1: überkritische Masse

 Kritische Masse eines beliebig geformten spaltbaren Materials durch Verhältnis der Oberfläche zum Volumen festgelegt

 235 U: pprox 50 kg: entspricht einer 235 U-Kugel mit R pprox 8.4 cm

Bemerkung: kritische Masse verkleinern, indem spaltbares Material mit Neutronenreflektor umgeben

Energiegewinnung:

Spaltung von 1 kg 235 Uran $\stackrel{\wedge}{=}$ Verbrennung von 750 t Kohle

Produkt. von radioaktiven Spaltprodukten

2770 t CO₂ in Atmosphäre

15.3 Kernspaltungsreaktor

 Anlage zur Erzeugung von Wärme durch die bei gesteuerten Kettenreaktion freiwerdende kinet. Energie → Kühlmittelkreislauf → Stromerzeugung

spaltbares Material: Natururan oder $^{235}\mathrm{U}$ –angereichert von überkritischer Masse

aktive Zone $\stackrel{\triangle}{=}$ Spaltzone: spaltbares Material Kühlmittel Moderator Regelstäbe des Reaktors

• Bedingung für Reaktorbetrieb: k = 1

Regelung von k: durch neutronenabsorbierende Regelstäbe, z.B.: Bor, Cadmium

$$k>1: k_{\ddot{\mathbf{u}}}=k-1$$
 (Überschuss)
$$dN=\frac{Nk_{\ddot{\mathbf{u}}}}{\tau}dt \qquad \qquad \tau \dots \text{ mittleres } \tau \text{ einer Neutronengeneration}$$

$$N=N_0e^{(k_{\ddot{\mathbf{u}}}/\tau)t}$$

Reaktorperiode: $T = \frac{\tau}{k_{\ddot{\mathbf{u}}}}$

Wenn Regelung nur mit verzögerten Neutronen ($\tau \geq 0.1s$):

$$0 < k_{\ddot{\text{u}}} < 0.0065 \qquad \rightarrow T \simeq 15 \text{s}$$

→ mechanische Regelung möglich

Reaktorbetriebsbereiche:

1 < k < 1.0065: prompt unterkritisch k = 1.0065: prompt kritisch k > 1.0065: prompt überkritisch

Graphit – Reaktor (1. Reaktor (Fermi), Tschernobyl)

spaltbares Material: angereichertes ²³⁵U: 1% - 5%

Moderator: Graphit Kühlmittel: CO₂

Wärmeabfuhr : Wasser

grosse Reaktorabmessung, da Graphit geringes Neutronenbremsvermögen → grosser Energieaufwand

<u>Leichtwasser–Reaktor</u>:

spaltbares Material: angereichertes ²³⁵U: 1% - 5%

H₂O verwendet für: Moderator

Kühlmittel

Neutronenreflektor

Druckwasserreaktor: 2 Wasser-Kreisläufe (z.B. Goesgen) Siedewasserreaktor: 1 Wasser-Kreislauf (z.B. Leibstadt)

zur Zeit wirtschaftlichster Reaktortyp

Schwerwasser–Reaktor :

spaltbares Material: Natururan

Moderator: D₂O (Deuterium mit kleiner n–Absorption)

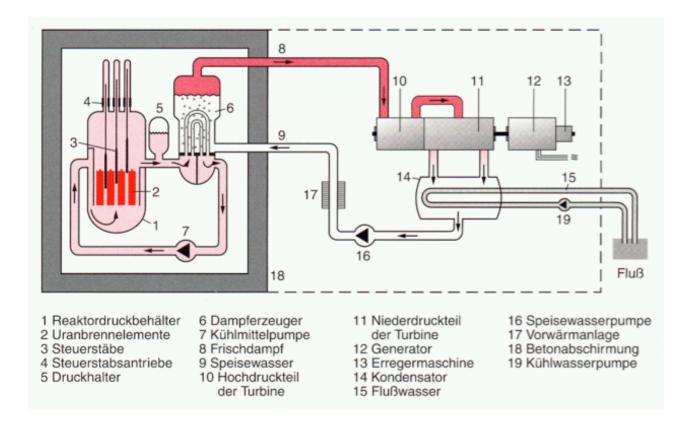
Normal: Druckwasserreaktor Beispiel: Candu (Canada)

Brutreaktor (Brüter)

um Ausnutzungsgrad des Uranbrennstroffes zu erhöhen

Prinzip: nutze Umwandlung von $^{238}\mathrm{U}$ nach $^{239}\mathrm{Pu}$ durch schnelle n zur Energiegewinnung und Erzeugung neuer Spaltneutronen

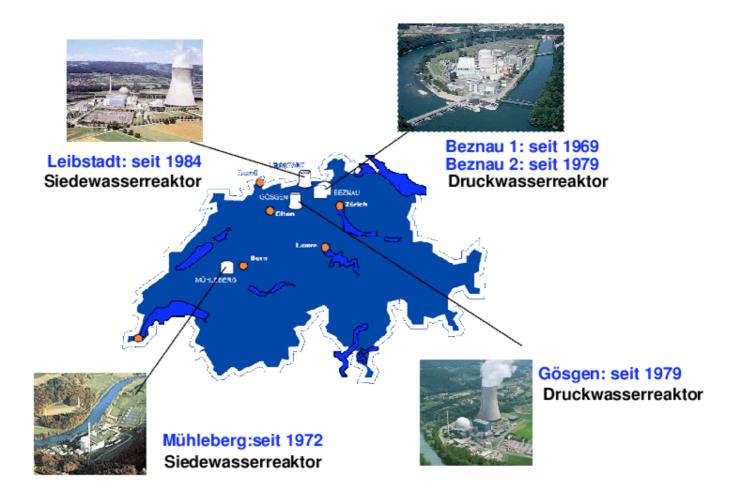
Neutronen induzieren folgende Kettenreaktion:


 \Rightarrow aus $^{238}_{92}U$ wird $^{239}_{94}Pu$ "erbrütet", bei gleichzeitiger Spaltung von $^{235}_{92}U$

Kühlmittel: flüssiges Natrium chemisch aktiv wird radioaktiv

Steuerung des Reaktors schwieriger als bei Leichtwasser – Reaktoren

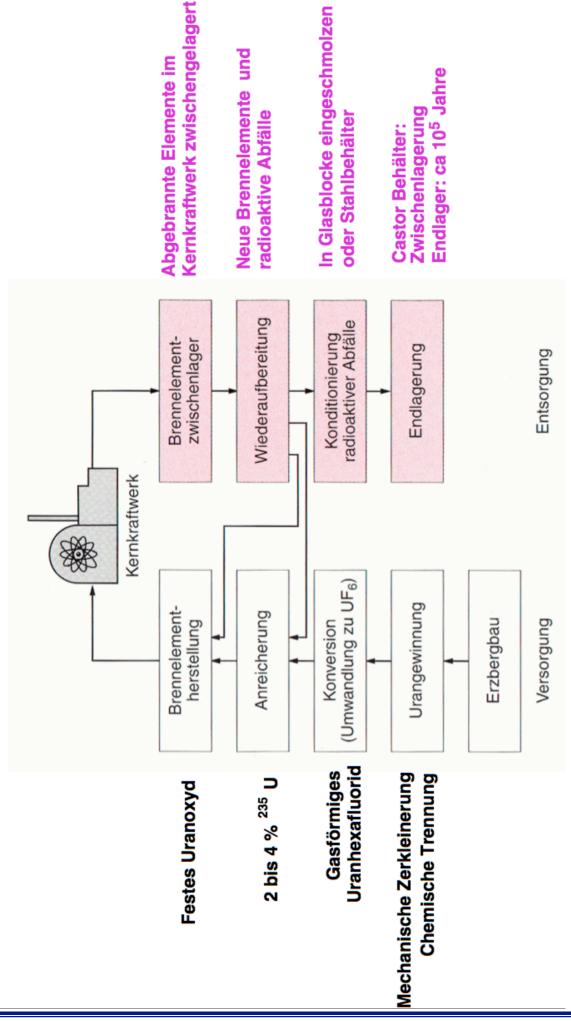
Schematische Darstellung eines Druckwasser Reaktors



Wirkungsgrad der Energieproduktion:

Vollständige Spaltung von 1 g ²³⁵U liefert an einem ganzen Tag 1MW Leistung

 \Longrightarrow 1 g 235 U liefert Energie $\overset{\wedge}{=}$ 3·10 6 mal von 1 g Kohle


Kernkraftwerke in der Schweiz

Anteil der Kernenergie an der Stromerzeugung:Beispiele

Land	%-Anteil des Stromes	Zahl der KKW
Schweiz	40	5
Frankreich	80	58
Grossbritanien	28	35
Deutschland	32	19
Belgien	60	7
Russland	14	29
Urkaine	47	14
USA	20	104
Welt (31 Länder)	16	440 + 30 im Bau

Radioaktiver Abfall und Entsorgungskonzept 15.4

15.5 Atombombe (Kernspaltungsbombe)

- Explosionsartig ablaufende Kettenreaktion eines spaltbaren Materials überkritischer Masse
- 1942 1945: USA: Oppenheimer, Fermi, Bethe Lawrence, Seaborg, Teller,...

Folgende Probleme mussten gelöst werden:

- Gewinnung von ²³⁵U durch Isotopentrennung
- Bestimmung der mittleren freien Weglänge
 → Ermittlung der kritischen Masse
- Verhindern vorzeitiger Explosion

Hiroshima: Uranbombe Sprengkraft $\stackrel{\wedge}{=}$ 20 kt TNT Nagasaki: Plutoniumbombe $\stackrel{\wedge}{=}$ Normalbombe

TNT: Trinitroltoluol . . . herkömmlicher Sprengstoff

Auswirkung der Normalbombe:

- ullet von wirksamer Energie: \sim 83% in $E_{
 m kin}$ der Spaltprodukte
 - ightarrow Aufheizen des Explosionszentrum: \sim 10 7 K
 - ightarrow Heisser leuchtender Feuerball: $\phi \sim$ 470 m
- Strahlung einige 0.1 s nach Explosion maximal
- Rest: 11%: langfristig nach Explosion in Form von β und γ -Strahlung der radioaktiven Spaltprodukte ausgesendet \rightarrow Gesundheitsschäden

15.6 Strahlendosis

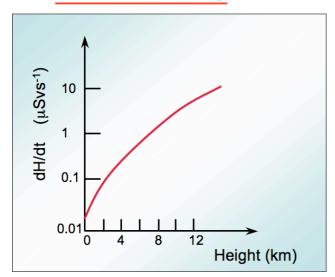
- Aktivität: Zahl der pro Sekunde zerfallenen Kerne Einheit: 1 Bq (Becquerel) = 1 Zerfall/s 1 Ci (Curie) = 3.7·10¹⁰ Bq
- Energiedosis: im bestrahlten Körper absorbierte
 Strahlungsenergie pro Masseneinheit

Einheit: 1 Gy (Gray) = 100 rad = 1J/kg rad... radiation absorbed dose

 verschiedene Strahlenarten → unterschiedliche Schädigung

Qualitätsfaktor Q

Äquivalentdosis H = Energiedosis · Q


Q	Strahlungsart		
1	Röntgen-, Gammastrahlung		
	und Elektronen		
2,3	thermische Neutronen		
10	schnelle Neutronen,		
	Protonen und einfach		
	geladene lonen		
20	lpha–Teilchen		
	und schwere lonen		

Einheit: 1 Sv (Sievert)

1 rem = 0.01 Sv

Quellen der natürlichen Strahlenbelastung:

Höhenstrahlung:

Äquivalentdosisleistung der kosmischen Strahlung

Höhe über Erdboden: $h=0~{\rm km} \rightarrow {\rm 0.04~\mu Sv/s}$

 Natürliche Radioaktivität ausserhalb und innerhalb des Hauses:

Aussenb	ereich	Belastung im Haus		
Gestein	A/Bq/kg	Quelle	Aktivität	
Granit	1000	Radon	$pprox$ 50 Bq/m 3 Luft	
Tonschiefer	700	Leitungswasser	1 - 30 $\mathrm{Bq/dm}^3$	
Sandstein	350	Kalium im Körper	4500 Bq	
Basalt	250			
Gartenerde	400			

Mensch: 25% externe Strahlenbelastung

50%: Höhenstrahlung

je 25%: Kalium und Nuklide aus U + Th - Reihe

75% interne Strahlenbelastung

68%: einatmen von Radon im Zimmerluft

32%: durch Nahrungsmittel

Mittlerer Wert der Strahlungsbelastung: \sim 2.2 mSv/a Medizinische Untersuchung: \sim 0.5 – 1.0 mSv/a