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Development stages of a Cumulonimbus (Cb)
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Fig. 9.1 Three stages in the evolution of common convective showers. (a) cumulus
stage; (b) mature stage; (c) dissipating stage. Altitude in kilometers on right. Ar-
rows denote air motion; dash-dot lines represent boundary of rain-cooled air. [From
Doswell (1985).]

Figure: Three stages of cumulonimbus clouds (Emanuel, 1994)
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Empirical model |
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Figure 8.1 Empirical model of a small cumulonimbus cloud. Based on about 90 research aircraft|
penetrations of small cumulonimbus and large cumulus clouds. (From Hobbs and Rangno, 1985.
Reprinted with permission from the American Meteorological Society.)

Houze (1993), Fig. 8.1
Characteristics:

> younger developing side (left)
» older glaciated side (right)
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Developing side:
» cumulus cell with updraft motion
> buoyant cores, leading to cloud turrets (Ax ~ 1 — 3 km)

» within turret:

> overturning as in a thermal (— cumulus dynamics)
» generating of horizontal vorticity (see below)

> on each turret: spherical tufts (diameter ~ 100 — 200 m)

» across the Cb the tops of turrets are formed at increasingly
higher altitudes (i.e. new updrafts form systematically on the
developing side of the cloud)
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Glaciated side:

» after reaching above 0°C—level:
some droplets are as large as 20um— ice enhancement

> high ice concentrations (1 — 100L~!) in localized regions

> ice particles extend vertically, ice strands are formed at lower
levels, graupel can be formed

> aggregation of ice particles just above of the 0°C—level —
formation of stratiform precipitation

» decaying / collapsing of the updrafts:
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Lightning in Cb |

» sequence of lightning typical for Cbs
> no lightning until cloudtop rises above —15/ — 20°C —level
> two types of lightning:

1. Intracloud

2. Cloud-to—ground
Physics: Touze (1003). Fig. 8.4

» positive and negative charges become separated within the
region of cloud and precipitation

» lightning = transfer of charge

» T =~ 30000 K in narrow channel

> pressure enhancement by 1-2 orders of magnitude =

» supersonic shockwave
> soundwave (thunder)
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MATURE STAGE ~ STRATOSPHERE DISSIPATING STAGE
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Figure 8.3 Schematic of the electrical structure of a cumulonimbus cloud. Positive and nggative
signs indicate the polarity of the charge at various locations. Streamlines indicate direction of airflow.
(From Williams, 1988. © Scientific American, Inc. All rights reserved.)

Figure: Distribution of charge, Houze (1993)
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Motivation

» main negatively charged region is sandwiched between two
positively charged regions
> characterisitics of negatively charged region:
> vertical extension < 1 km
> horizontal extension over several kilometres
> located at ~ —15°C

Mechanism of electrification (current research)

> transfer of charge when graupel particles collide with small ice
crystals (H™ ions)
> polarity depends strongly on temperature and liquid water content
> critical temperature (“charged-reversed—temperature”, T, ) in the
range —10 > T, > —20°C
» for T < Tg: negative charge transferred to graupel
» for T > T positive charge transferred to graupel
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Lightning in Cb IV

Main conclusions/observations:
» lightning needs ice particles (in most cases)
> supercooled water droplets seem to play a role

» reversal temperature depends on liquid water content and
relative humidity (Berdeklis and List, 2001)

Research is still going on ...

Remark: At the moment there is no (cloud resolving) model
containing charged particles (— solving Maxwell equations ...)
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Overview multicell thunderstorms

Characteristics and properties:
» more frequent than single cell storms
» storm consists of a pattern of cells in various development
stages (early/mature/dissipation stage)
» different cells can trigger each other — self—organisation

> larger horizontal extension (several tens of km) than single cell
storms
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Multicell Thunderstorms |

(a) ‘The Thunderstorm
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Multicell Thunderstorms I

Under certain conditions of wind shear the multicell thunderstorm
takes on a form of organisation
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Multicell Thunderstorms 111

n+1: developing stage, strong updraft
n : developing stage, collection of ice particles
n-1: downdraft due to precipitation

n-2: dissipating stage (precipitation)
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Supercell Thunderstorms - Overview |

Characteristics:
» same size as multicell thunderstorms

» only single storm—scale circulation of one giant
updraft—downdraft pair

» strong vertical updrafts 10 — 40 m/s
» often producing hail

» often transition to tornadic phase — next lecture
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Supercell Thunderstorms - Overview |l
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Figure 8.9 Schematic visual appearance of a supercell thunderstorm. (Based on U.S. National
Severe Storms Laboratory publications and an unpublished manuscript of Howard B. Bluestein.)

Houze (1993), Fig. 8.9
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Supercell Thunderstorms - Overview Ill
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Figure: ldealized view from satellite, Houze (1993), Fig 8.10
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Supercell vs. Multicell Thunderstorms

Environmental conditions favouring different types of storms:
Stability and wind shear

P I . 50 . .
¥ 2d Variation of wind shear: - ]
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Weisman & Klemp (1982), Figs. 2&3 FiG. 3. Time series of maximum vertical velocities for the Us

=0, *5, 25, 35 and 45 m s wind shear experiments. gy = 14
gkgl

» us =0 m/s: single cell storm (convective shower)
> us = 15 m/s: multicellular storm structure

> us > 25 m/s: supercell dynamics (redevelopment of cells)
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Basic equations (neglecting Coriolis term)

Incompressible Boussinesq equations:

Motivation

Dv ov 1 -
—_— = — v-Vv = ——Vp"+Bk+F 2
Dt ot +u o Pt * ( )
~~ advection
time evolution
V- (po¥) = 0 (3)
Vorticity w = Vxv=n-i+&j4+Ck (4)
_ow v, _0u 0w _ov 0u
”_ay ox’> 0z Ox’°  Ox Oy
Vorticity equation (sources & sinks of vertical vorticity):
D ow ow ow
e = - té—tn—+ F (5)
Dt 0z oy 0x
. — mixing
stretching tilting
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Recap: Boussinesq approximation

Assumption: Density variations (p*) are only regarded if they give
rise to buoyancy forces

— 0 *
B=—gl— 0 — gl (6)
£o Po

and they are ignored as they affect the fluid inertia or continuity

V- (p7) =0 (7)
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Environment & initial state

Environmental conditions (horizontal wind V and wind shear §)

q S, = 2 OV _BU - 9V -
VUit Ve, S=5, =5, 1t 5
Initial state:

» isolated cumulus in unidirectional wind shear, westerly velocity
U increases with height (0U/Jz > 0), V = 0.

» in early convective growth, the cloud moves with the westerly
flow

> low level inflow from east (due to wind shear)

» upper-level outflow towards east (due to wind shear)
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Klemp (1987), Fig. 3a
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A vortex circulation develops due to the (linearized) vorticity
equation:

be_oc, o< _ow oUow
Dt Ot ox "y ~ 0z dy
neglegible
> horizontal vorticity (£) generated by wind shear
» vortex tube lifted by convective updraft

> positive (cyclonic) vertical vorticity (¢) is generated along the
southern flank of the updraft (Ow/dy > 0)

g_ > negative (anticyclonic) vertical vorticity is generated along the
2 northern flank of the updraft (Ow/dy < 0)
<<

E§ » Remark: Entrainment enhanced by wind shear and vortex

O % dynamics
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As the cloud develops further, non—linear effects become important:

o L 9C aUdw | aw o)
ot Ox 0z Oy 0z

N——

stretching

i.e. stretching of the vortex tube becomes important
— enhancement of vorticity
two possibilities for the development of the storm:
1. dissipation of the storm
2. splitting and intensification of the storm (supercell
thunderstorm)
Factors for splitting the storm:
> storm-—relative low—level inflow from the east: preventing the
cold air from moving out ahead of the storm
» lifting vertical pressure gradients (more important, see below)

Institute for Atmosphefie

IACETH

Peter Spichtinger (IACETH) Thunderstorms | April 24, 2007 24 / 38




Motivation Empirical model Lightning in Cb  Multicells Supercells Dynamics Circulation Splitting E
[} [ele! 0000 0000 0000 0000 oo ®00000 O

Storm Splitting |

Momentum equations for the splitting stage:

ov 1 -

— =——Vp"+Bk—-V-VvV 10
B P v.Vv (10)
multiplying by po, taking the 3D divergence, using the Boussinesq
condition (as in last lecture, slide 7) and splitting p* = pj, + pg we
get:

V2ph =Aphy = —V-(pov-V¥) (dynamics) (11)
9
Vipg =App = 5_(poB) (buoyancy) (12)
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Storm Splitting 11

Only regard the dynamical sources of pressure perturbations:

ouN?  [fov\?  [ow\? d?logpo
A * - _ _ i il _ 2 e lr0 2
Po. = o (ax) +<6y) +(az) iz "

fluid extension

5 ov du n Ou dw n ov ow (13)
P | Bx dy 0z 0x 0z dy
fluid shear

Investigation of the shear term %g—;

g_ Case of axis—symmetrical rotation: % = —g—;

g

% é[)v ou ov 2_ 1<2

S ox 9y  \0x) 4
Q2
<z — -
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Axis—symmetrical rotation

(uyw)

x = Rsinp, y = Rcosyp

N Rotation with constant velocity V at radius R:
o

g u=—-Vsinp=—-V% v=Vcosp=V3%
<

5 dv _ Ou

E ox Oy

£
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Storm Splitting 11

Simplified assumption: in the interiour of a flow Ay < —t
ph o< —Aph x 2 (14)

Interpretation:
» dynamic pressure perturbation minimum associated with vortex
» strong midlevel rotation at the updraft flanks acts to lower
pressure — inducing updraft growth (lifting pressure gradient)
» second and third term in the fluid shear term of eq. 13 also
contribute to lowering the pressure at the flanks
» fluid extension terms do not contribute to the lifting pressure
gradients
As the splitting progresses and the two updraft centres move apart,
the downdraft tilts the vortex lines downward
— two vortex—pair circulations
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Klemp (1987), Fig. 3b
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Storm propagation

At this stage, each of the two vortex pairs will propagate
transversely to the mean wind shear S
Remark: We will consider storm propagation more detailled within
the next lecture.
Considering a steady updraft propagating transversely to wind shear
(i.e. to the south with velocity v.):

> in a coordinate framework relative to the moving updraft: flow

approaches from the south with constant velocity —v,

» linearized vorticity equation becomes

o¢  oUow
Ve =

9y ~ 9z 0y (15)

» this equation can be integrated, yielding: { = %—i’j\“/c

Interpretation: Vertical vorticity is coincident with vertical velocity
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Preferential enhancement of cyclonically
rotating storms

From above we get two different types of supercell thunderstorms:
» right—moving cyclonally rotating storms
» left-moving anticyclonally rotating storms

Data investigations show that most of the storms are right—-moving
cyclonally rotating storms. WHY?
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Cyclonically rotating storms — simple model

updraft perturbation in homogeneous fluid (i.e. no density
perturbations — no buoyancy forces)

equations for vertical momentum and pressure perturbations (only
dynamical sources):

D 1 Op;
w2 %p (16)
Dt pPo 0z
oUu- 9V-
Dpp = —2p0 | ooit =i |- 17
PD ro| 57 T | Vv (17)
A ————
a s
g rd rd
g whereas Vy, = 9/0x i+ 0/dy - j
E % We assume again App, < —p[, and get:
L -
o2 Pp X —App =2poS - Vpw (18)
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» shear produces high pressure on upshear (west) side of the
updraft

> shear produces low pressure on downshear (east) side of the
updraft

> this induces low—level lifting on downshear side — reinforcing
storm inflow

» no contribution to preferential growth on a flank
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Klemp (1987), Fig. 7a
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This pressure effect increases in amplitude with height beneath the
level of the maximum updraft velocity

simplest case: linear shear:

V =(U,V)=(U,0) = (U + S - 2,0)

2 au ov

S - (575) - (SX7O)

- ouU ow ow
=V = T ¥ ax

only in x—direction (West—East—direction)
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Turning shear |

> turning shear (clockwise with height) produces pressure
gradients that favours ascent on the southern flank

» turning shear (clockwise with height) produces pressure

gradients that favours descent on the northern flank

— enhancement of development of right—-moving storm
— suppressing of development of left—moving storm
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Klemp (1987), Fig. 7b
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U= —Vo-cos(9), V = =V, -sin(p), p = 27 — m—

Zo

U(0) = — Vo, V(0) = 0; U(2o) = Vo, V(26) = 0

ou T oV T
9 *Vog sin(p), Fr VOZ cos(¢)
ou ou ov s oV T

520 =05 (20) = 0: 57 (0) = Vo 5(z0) = Vo

Zo
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