

Instabilities

Perturbation equation

▶ Rewrite the Navier-Stokes equation in terms of deviations (*) from hydrostatic balance (subscript o):

$$\frac{d\vec{v}}{dt} = -\frac{1}{\rho_o} \nabla p^* - f\vec{k} \times \vec{v} - B\vec{k} + \vec{F}$$
(1)

▶ Where *B* is the buoyancy, defined as:

$$B = -g \frac{\rho^*}{\rho_o} \approx -g \left(\frac{p^*}{p_o} - \frac{T_v^*}{T_{v,o}} \right)$$
(2)

▶ More generally to take the hydrometeors into account:

$$\rho = \rho_a (1 + q_H) \tag{3}$$

where q_H = mass mixing ratio of hydrometeors So that

$$B = g\left(\frac{T^*}{T_o} - \frac{p^*}{p_o} + 0.61q_v^* - q_H\right)$$
(4)
Instabilities/Microphysics April 3, 2007 6 / 27

Ulrike Lohmann (IACETH)

Π

April 3, 2007 6 / 27

Buoyant instabilities

Instabilities

The buoyancy restoring force produces stable sinusoidal oscillations in the vertical (undamped harmonic oscillation) when the potential temperature of a hydrostatically balanced mean state increases with height (∂Θ/∂z > 0):

$$\frac{d^2w}{dt^2} + wN^2 = 0.$$
 (5)

where $N \equiv \sqrt{\frac{g}{\Theta} \frac{\partial \Theta}{\partial z}} = \text{Brunt-Väisälä frequency}$ solution:

$$w = \hat{w} \exp\left\{i\sqrt{N^2}t\right\} \tag{6}$$

• $\tau \sim$ 8 min in stable environment

Ilrike Lohmann (IACETH)

▶ if $\partial \Theta / \partial z < 0$ ($N^2 < 0$), the solution may grow exponentially → buoyant instability

Instabilities/Microphysics

April 3, 2007 8 / 27

$$u' = exp\{ivt\}, v = \pm \sqrt{f\partial M}/\partial x$$

 $\partial M/\partial x > 0$: inertial oscillation; $\partial M/\partial x < 0$: inertial instability

Ilrike Lohmann (IACETH) Instabilities/Microphysics

Symmetric instability

Instabilitie

In the atmosphere buoyancy and the Coriolis force act simultaneously

Instabilities/Microphysics

- Assume that the large-scale mean flow is in geostrophic and hydrostatic balanced in the absence of friction
- The atmosphere may be stable for pure horizontal displacement and pure vertical displacement but unstable to slantwise displacement

Symmetric instability can be responsible for rainbands (*http*: //ww2010.atmos.uiuc.edu/guides/mtr/hurr/gifs/def1.gif)

Jlrike Lohmann (IACETH)

April 3, 2007 13 / 27

conditions for symmetric instability: slope of the M surfaces must be less than the slope of the Θ surfaces:

$$\frac{\partial \Theta}{\partial z}\Big|_{M} < 0 \leftrightarrow \left. \frac{\partial M}{\partial x} \right|_{\Theta} < 0 \tag{9}$$

- ► Moist but unsaturated air maybe conditionally symmetric unstable (analogous to conditional instability) → important for hurricane formation
- If lapse rate is conditionally unstable on a constant M surface, then replace Θ in above equation with Θ_{es}

Π

Symmetric instability

Review	Instabilities	Cloud formation	Rain formation	
Ph	ase changes			
All and	 Are easiest understood in terms thinking that a system wants to minimise its Gibbs free energy G (analogous to a system wanting to maximize its entropy) 			
ence	•	$G = u + e_s \alpha - Ts$	(10)	
mate Sc	where $u = internal energy specific volume, s = e$	ergy, $e_s =$ saturation vapo ntropy	or pressure, $\alpha =$	
ric and Oli	 nucleation from the vapor phase requires to form a new surface, which needs energy. 			
for Atmosphe	 if the vapor is supersa change in Gibbs free e nucleation has occurr 	turated and the volume to nergy is larger than the s ed and the particles is sa	erm of the urface term, id to be	
C.E	activated			

Instabilities/Microphysics

Ulrike Lohmann (IACETH)

April 3, 2007 17 / 27

Kelvin equation

Vapor pressure enhancement over smaller drops due to surface tension

Cloud fo

$$e_{s}(r) = e_{s}(\infty) exp\left(\frac{2\sigma}{R_{v}\rho_{w}Tr}\right)$$
(11)

where T = temperature, r = particle radius, σ = surface tension \approx 0.075 N/m, ρ_w = water density, R_v = gas constant of water vapor (461.5 J kg⁻¹ K⁻¹).

Saturation ratio	Critical radius	number of molecules
S	$r^*(\mu m)$	n
1	∞	∞
1.01	0.12	2.47 × 10 ⁸
1.1	0.0126	2.81×10^{5}
2	1.73×10^{-3}	730
10	5.22×10^{-4}	20

Instabilities/Microphysics

JIrike Lohmann (IACETH)

April 3, 2007 19 / 27

Growth by collection (=collision-coalescence)

coalescence = one or two particles merge during contact

$$\frac{dR}{dt} = \frac{\pi}{3} \int_o^R \left(\frac{R+r}{R}\right)^2 n(r) [u(R) - u(r)] r^3 E(R, r) dr \quad (15)$$

where R, r = radius of collector and collected drop; n(r) = number of drops with size r

- u(R), u(r) = fall velocity of collector and collected drop
- E(R, r) = collision efficiency (= fraction of drops with radius r in the path swept out by collector drop that actually collide with it):

$$E(R,r) = \frac{x^2}{(R+r)^2}$$
 (16)

Π

Rain form

