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Hurricanes II: Steady state model

http://www.osei.noaa.gov/Events/Tropical/Atlantic/1998/Mitch 10/TRCmitch299B G8.jpg
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Motivation

Emanuel, 2005
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Summary of first part

I Primary circulation of TC’s can be described by gradient wind

balance
I A warm core of TC’s can be found, this is consistent with the

primary circulation
I TC’s can be described using the Carnot process:

I Heating due to moisture from the boundary layer
I Maximal tangential wind speed can be estimated from the

thermodynamic properties
I Pressure deviation in the core of TC’s can be estimated from

the maximal tangential wind speed

Today’s lecture: Steady state model (Emanuel, 1986) in details

(tangential wind, temperature and momentum distributions)

Next lectures:

I Change of intensity/tracks of hurricanes
I Models and forecasts

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 3 / 43
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Equations

Momentum equations, continuity equation and thermodynamic

equation in cylindrial polar coordinates (r , ϑ, z) on an f–plane:

∂u

∂t
+ u

∂u

∂r
+

v

r

∂u

∂ϑ
+ w

∂u

∂z
− v2

r
− fv = −1

ρ

∂p

∂r
(1)

∂v

∂t
+ u

∂v

∂r
+

v

r

∂v

∂ϑ
+ w

∂v

∂z
− uv

r
+ fu = − 1

rρ

∂p

∂ϑ
(2)

∂w

∂t
+ u

∂w

∂r
+

v

r

∂w

∂ϑ
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g (3)

1

r

∂ρru

∂r
+

1

r

∂ρv

∂ϑ
+
∂ρrw

∂z
= 0 (4)

∂θ

∂t
+ u

∂θ

∂r
+

v

r

∂θ

∂ϑ
+ w

∂θ

∂z
=

.
θ (5)
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Equations

Exner–function

π ≡
(

p

po

)R/cp

, T = πθ (6)

Hydrostatic approximation:

∂p

∂z
= −ρg

ideal
gas⇔ d log π

dz
=

g

cpT
(7)

Absolute angular momentum m:

m ≡ rv +
1

2
fr2 (8)

Equation for evolution of m

∂m

∂t
+ u

∂m

∂r
+

v

r

∂m

∂ϑ
+ w

∂m

∂z
= −1

ρ

∂p

∂ϑ
(9)

For an axisymmetric flow without friction: −1
ρ

∂p
∂ϑ = 0

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 5 / 43
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Notations

In this and the following lectures we use this terminology:

I ∗ denotes saturated quatities (e.g. saturated equivalent

potential temperature θ∗e , saturation specific humidity q∗)

I subscript s denotes quantities at the surface, i.e. at z = 0

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 6 / 43
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Steady state model

Question: Why does the eye (radius) increase with height?

For answering this question we regard the steady state model of a TC:
CHAPTER 4. THE EMANUEL STEADY STATE HURRICANE MODEL 63

Figure 4.1: Schematic diagram of the secondary circulation of a mature tropical
cyclone showing the eye and the eyewall clouds. The absolute angular momentum per
unit mass, M , and equivalent potential temperature, θe of an air parcel are conserved
after the parcel leaves the boundary layer and ascends in the eyewall clouds. The
precise values of these quantities depend on the radius at which the parcel exits
the boundary layer. At radii beyond the eyewall cloud, shallow convection plays an
important role in moistening and cooling the lower troposphere above the boundary
layer and warming and drying the boundary layer as indicated.

which is a state variable. Therefore we can regard α as a function of p and s∗ and
with a little manipulation we can express the thermal wind equation as:

1

r3

(
∂M2

∂p

)

r

= −
(

∂α

∂s∗

)

p

(
∂s∗

∂r

)

p

. (4.5)

I will show in an Appendix to this chapter that
(

∂α

∂s∗

)

p

=

(
∂T

∂p

)

s∗
, (4.6)

whereupon Eq. (4.5) becomes

1

r3

(
∂M2

∂p

)

r

= −
(

∂T

∂p

)

s∗

(
∂s∗

∂r

)

p

. (4.7)

With the assumption that M and s∗ surfaces coincide, i.e. M = M(s∗), Eq. (4.7)

after Emanuel, 1986

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 7 / 43
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Steady state model - basic assumptions

Basic assumption: Steady state TC with

I axisymmetric circulation: ∂
∂θ = 0

I hydrostatic balance: ∂p
∂z = −gρ

I gradient wind balance: v2

r + fv = 1
ρ

∂p
∂r

I vortex neutral to slantwise convection (symmetric stability),

i.e. combined buoyant/centrifugal potential of boundary layer

air is zero:
∂θ∗e
∂z

∣∣∣
m

= 0,
∂m

∂r

∣∣∣
θ∗e

= 0 (10)

where m = rv + 1
2 fr2 denotes the total angular momentum.

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 8 / 43
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Recap of symmetric instability

Two kinds of stabilities:

I Buoyant stability: ∂θ
∂z > 0, restoring force = gravity

I Inertial stability: ∂M
∂x > 0, restoring force = Coriolis force

In the atmosphere, buoyancy and Coriolis act simultaneously. The

atmosphere may be stable for pure vertical and horizontal

displacements, but unstable to slantwise displacement
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Review Instabilities Cloud formation Rain formation

Symmetric instability

! In the atmosphere buoyancy and the Coriolis force act

simultaneously

! Assume that the large-scale mean flow is in geostrophic and

hydrostatic balanced in the absence of friction

! The atmosphere may be stable for pure horizontal

displacement and pure vertical displacement but unstable to

slantwise displacement

Symmetric instability can be responsible for
rainbands (http :

//ww2010.atmos.uiuc.edu/guides/mtr/hurr/gifs/def 1.gif )

Ulrike Lohmann (IACETH) Instabilities/Microphysics April 3, 2007 13 / 27
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Review Instabilities Cloud formation Rain formation

Symmetric instability
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Review Instabilities Cloud formation Rain formation

Symmetric instability

! conditions for symmetric instability: slope of the M surfaces

must be less than the slope of the Θ surfaces:

∂Θ

∂z

∣∣∣∣
M

< 0↔ ∂M

∂x

∣∣∣∣
Θ

< 0 (9)

! Moist but unsaturated air maybe conditionally symmetric

unstable (analogous to conditional instability) → important for

hurricane formation

! If lapse rate is conditionally unstable on a constant M surface,

then replace Θ in above equation with Θes

Ulrike Lohmann (IACETH) Instabilities/Microphysics April 3, 2007 15 / 27

Houze, 1993
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Thread for the lecture

Describing the properties of the TC in different regions:

I Above the boundary layer, i.e. slope of the eyewall

I Boundary layer

I eye region (centre pressure)

II eye wall

III outer region (inflow region)

General question:

How are dynamics and thermodynamics related in a TC?

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 10 / 43
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Thread for the lectureCHAPTER 4. THE EMANUEL STEADY STATE HURRICANE MODEL 63

Figure 4.1: Schematic diagram of the secondary circulation of a mature tropical
cyclone showing the eye and the eyewall clouds. The absolute angular momentum per
unit mass, M , and equivalent potential temperature, θe of an air parcel are conserved
after the parcel leaves the boundary layer and ascends in the eyewall clouds. The
precise values of these quantities depend on the radius at which the parcel exits
the boundary layer. At radii beyond the eyewall cloud, shallow convection plays an
important role in moistening and cooling the lower troposphere above the boundary
layer and warming and drying the boundary layer as indicated.

which is a state variable. Therefore we can regard α as a function of p and s∗ and
with a little manipulation we can express the thermal wind equation as:

1

r3

(
∂M2

∂p

)

r

= −
(

∂α

∂s∗

)

p

(
∂s∗

∂r

)

p

. (4.5)

I will show in an Appendix to this chapter that
(

∂α

∂s∗

)

p

=

(
∂T

∂p

)

s∗
, (4.6)

whereupon Eq. (4.5) becomes

1

r3

(
∂M2

∂p

)

r

= −
(

∂T

∂p

)

s∗

(
∂s∗

∂r

)

p

. (4.7)

With the assumption that M and s∗ surfaces coincide, i.e. M = M(s∗), Eq. (4.7)
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Angular momentum

The angular momentum m = rv + 1
2 fr2 is conserved in an

axisymmetric framework (see last lecture, slide 15, eq. (9)):

∂m

∂t
+u

∂m

∂r
+

v

r

∂m

∂ϑ
+w

∂m

∂z
= −1

ρ

∂p

∂ϑ
= 0 for an axisymmetric model

A small perturbation dm (on an isosurface of m) splitted in r and p

direction yields:

dm =
∂m

∂r
dr +

∂m

∂p
dp = 0⇔ dr

dp

∣∣∣
m

= −
∂m
∂p

∂m
∂r

(11)

and this is the slope of an m–surface.

Question: How can the m-surfaces be connected to other variables

of the TC?

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 12 / 43
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Some dynamics

We start with the hydrostatic and gradient wind balance (α = 1/ρ):

α
∂p

∂z
= −g (12)

α
∂p

∂r
=

v2

r
+ fv =

m2

r3
− 1

4
f 2r (13)

These equations can be reformulated to

g
∂z

∂p

∣∣∣
r

= −α (14)

g
∂z

∂r

∣∣∣
p

=
m2

r3
− 1

4
f 2r (15)

and by applying ∂
∂r to eq.(14) and ∂

∂p to eq.(15) this yields the

thermal wind equation

1

r3

∂m2

∂p

∣∣∣
r

= −∂α
∂r

∣∣∣
p

(16)

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 13 / 43
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Some thermodynamics

We assume reversible thermodynamics, i.e. α = α(p, s∗) with s∗

moist saturated entropy (s∗ := cp log θ∗e ):

∂α

∂r

∣∣∣
p

=
∂α

∂s∗

∣∣∣
p

∂s∗

∂r

∣∣∣
p

(17)

Using the (saturated) moist static energy (or enthalpy)

h = cvT + pα+ Lqvs , dh = Tds∗ + αdp we see:

∂h

∂p

∣∣∣
s∗

= α,
∂h

∂s∗

∣∣∣
p

= T (18)

and therefore

∂α

∂s∗

∣∣∣
p

=
∂2h

∂p∂s∗
=

∂2h

∂s∗∂p
=
∂T

∂p

∣∣∣
s∗

moist adiabatic T gradient (19)

From the definition of s∗ we find:

lines of constant θ∗e are lines of constant s∗

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 14 / 43

IA
C
E
T
H

In
st

itu
te

 fo
r 

A
tm

os
ph

er
ic

 a
nd

 C
lim

at
e 

S
ci

e
nc

e

Motivation Recap Steady state Thread Above the boundary layer Boundary layer Solution Cumulus para

Interpretation

Then eq. (16) reads as

2m

r3

∂m

∂p

∣∣∣
r

=
1

r3

∂m2

∂p

∣∣∣
r

= −∂T

∂p

∣∣∣
s∗

∂s∗

∂r

∣∣∣
p

(20)

We assume neutrality for slantwise convection, this implies that air

from the PBL (which is neutrally buoyant) lifted along surfaces of

constant angular momentum remains neutrally buoyant

⇔ moist entropy of lifted parcels equals the saturated entropy of

the environment.

This implies that the saturated moist entropy s∗ does NOT vary

along angular momentum surfaces m and s∗ is a function of m

s∗ = s∗(m) (21)

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 15 / 43
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Interpretation

This yields a reformulation of eq.(16):

2m

r3

∂m

∂p

∣∣∣
r

=
1

r3

∂m2

∂p

∣∣∣
r

= −∂T

∂p

∣∣∣
s∗

ds∗

dm

∂m

∂r

∣∣∣
p

(22)

here we used, that s∗ depends only on m, i.e.: ds∗

dm = ∂s∗

∂m

For determing the slope of the eyewall, we note, that along an

m-surface:

0 = dm =
∂m

∂r
dr +

∂m

∂p
dp ⇒ dr

dp
= −

∂m
∂p

∂m
∂r

(23)

This leads to an equation for the slope of the m–surfaces (in

r − p–space):
dr

dp

∣∣∣
m

=
r3

2m

ds∗

dm

∂T

∂p

∣∣∣
s∗

(24)

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 16 / 43
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Slope of the eyewall

Slope of the m–surfaces in the r − p–space

dr

dp

∣∣∣
m

=
r3

2m

ds∗

dm

∂T

∂p

∣∣∣
s∗

(25)

By integrating this equation along an m–surface

(r → ro ,T → To , p → po) we get:

1

r2

∣∣∣
m
− 1

r2
o

∣∣∣
m

= − 1

m

ds∗

dm
(T − To(s∗, po)) (26)

where the integration constant To may be interpreted as “outflow

temperature” This equation yields the shape (in r − T–space) of m

(or s∗) – surfaces

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 17 / 43

IA
C
E
T
H

In
st

itu
te

 fo
r 

A
tm

os
ph

er
ic

 a
nd

 C
lim

at
e 

S
ci

e
nc

e

Motivation Recap Steady state Thread Above the boundary layer Boundary layer Solution Cumulus para

Slope of the eyewall

Relation r − T on constant angular momentum surfaces for ds∗/dm = const

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 18 / 43
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Boundary layer

The equation above reads along the top of the PBL (z = h,

assuming r << ro):

− r2
∣∣∣
m

ds∗

dm
(TB − To(s∗, po)) = m at z = h (27)

where TB denotes the temperature inside the boundary layer

(assumption: TB constant for 0 ≤ z ≤ h, in good agreement with

observations)

Multiplying this equation by ∂m
∂r results in

− r2∂s∗

∂r
(TB − To) =

1

2

∂m2

∂r
at z = h (28)

Goal: From this equation we want to derive a relationship between

θe and p, i.e. we must eliminate m

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 19 / 43
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Boundary layer

Using the Exner-function π =
(

p
p̂

)R/cp

the gradient wind balance

can be written as follows:

m2 = r3

(
cpTB

∂log π

∂r
+

1

4
f 2r

)
(29)

inserting this into eq.(28) yields at z = h:

−TB − To

TB

∂log θe
∂r

=
∂log π

∂r
+

1

2

∂

∂r

[
r
∂log π

∂r

]
+

1

4

rf 2

cpTB
(30)

This equation can be integrated from the radial extent of the storm

ro to r :

−TB−To
TB

log
“

θe
θeo

”
=log

“
πeo
πe

”
+ 1

2 [r
∂log π

∂r ]
∣∣∣
ro

− 1
2 [r

∂log π
∂r ]+ 1

4
f 2

cpTB
(r2−r2

o ) (31)
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Boundary layer

Here,

T o :=
1

log(θ∗e/θea)

∫ log θe

log θea

Tod log θ∗e (32)

is the average outflow temperature weighted with the saturated

moist entropy of the outflow angular momentum surfaces.

By rewriting eq. (31) and integrating the eq. from r = 0 to the

radial extent of the storm r = ro , this yields a relationship between

the geometric area of the storm and its areal-average boundary

layer moist entropy surfeit:

r2
o =

16cpTB

f 2

1

r2
o

∫ ro

0

TB − T o

TB
log

θe
θea

rdr (33)

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 21 / 43
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Estimation of the central pressure

At the storm centre πc (rc = 0) equation (31) implies:

log

(
πc

πa

)
= −TB − T o

TB
log

(
θec
θea

)
+

1

4

f 2

cpTB
r2
o (34)

Interpretation: Pressure deficit may be expected to be weaker in

geometrically larger storms (noticable for ro ≤ 500 km).

estimation: θec
θea
≈ 1, πc

πa
≈ 1, therefore almost linear relationship

between pressure deficit and θ∗e :

p′c ≈ −
cp

R
pa

TB − T o

TB

θ′ec
θea

(35)

For θea = 345 K, po = 1015 hPa, TB = 295 K and To = 200 K this

yields

p′c [hPa] ≈ −3.3θ′ec [K ] (36)
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Potential temperature and pressureCHAPTER 1. OBSERVATIONS OF TROPICAL CYCLONES 9

Figure 1.5: Vertical cross-sections of equivalent potential temperature (K) in Hurri-
cane Inez of 1964 (From Hawkins and Imbembo 1976)

intense hurricane with a maximum wind speed in excess of 80 m s−1 and it had the
lowest sea-level pressure ever measured (888 mb) in the Western Hemisphere. The
following description is adapted from that of Willoughby (1995). The storm was
especially well documented by data gathered from research aircraft penetrations.

1.1.1 Precipitation patterns, radar observations

A composite of radar reflectivity observed in Gilbert’s core from one of the research
aircraft is shown in Fig. 1.6. The eye is in the center of the picture, and is surrounded
by the eyewall with maximum radar reflectivities of 40-47 dBZ4. The reflectivity in
the eye is below the minimum detectable signal for the radar. During the flight,
visual observation showed the eye to be free of clouds at and above flight level with
blue sky visible overhead. Below flight level, broken stratocumulus in the lowest 1
km of the eye partially obscured the sea surface. In the radar image, the radius
from the centre of the eye to the inner edge of the eyewall is about 8 km. The outer
edge of the eyewall is less than 20 km from the center. Surrounding the eyewall
is a ”moat” where the reflectivities are less than 25 dBZ, which is equivalent to a
factor of more than 100 lower rainfall rates than in the eyewall. As the aircraft flew
across the moat at 3 km altitude, it was in rain beneath an overcast sky, and low
stratocumulus obscured the surface. Beyond the outer edge of the moat (75 km from

4The decibel, abbreviated dBZ is a measure of the intensity of the backscattered radar beam
and is related to the intensity of precipitation in the storm.

Hawkins and Imbembo, 1976

Estimation: θec ≈ 365− 345 K, hence p′c ≈ −66 hPa
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Boundary layer

The boundary layer can be divided into three regions:

I eye region

II eyewall

III outer region

We use a streamfunction ψ to decribe the velocities:

ρru = −∂ψ
∂z
, ρrv =

∂ψ

∂r
(37)

Let c be a quantity that is conserved (e.g. c = θe ,m, . . .), then the

following equation holds:

∂c

∂t
+ u

∂c

∂r
+ w

∂c

∂z
= −1

ρ

∂τc
∂z

(38)

where τ denotes the vertical flux of c for all processes excluding

the mean circulation
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Boundary layer

Assumptions:

I storm in steady state: ∂c
∂t = 0

I PBL well mixed: ∂c
∂z = 0

u
∂c

∂r
= −1

ρ

∂τc
∂z

⇔ − 1

rρ

∂ψ

∂z

∂c

∂r
= −1

ρ

∂τc
∂z

⇔ ∂ψ

∂z

∂c

∂r
= r

∂τc
∂z

(39)

Integration along z yields∫ h

0

∂ψ

∂z

∂c

∂r
dz =

∫ h

0
r
∂τc
∂z

dz ⇔ ψ
∂c

∂r

∣∣∣h
0

= rτc

∣∣∣h
0

(40)

⇔ ψ(h)
∂c

∂r

∣∣∣
h
− ψ(0)︸︷︷︸

=0

∂c

∂r

∣∣∣
0

= r(τc(h)− τc(0)) (41)
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Boundary layer - Region II

We assume τc(h) ≈ 0, i.e. a negligible flux at the top of the PBL.

From standard aerodynamics the following equation holds for the

surface flux over the ocean:

τc(0) = −ρCc |~v |(c(h)− c(0)) (42)

and this reads for c = s∗ and c = m (≈ rv , neglecting Coriolis

term):

τs∗ = −ρCs |~v |(s∗(h)− s∗(0)) = −ρCs |~v |cp(log θ∗e (h)− θ∗e (0))

τm = −ρCm|~v |(m(h)−m(0)) = −ρCm|~v |r~v(h)

From these equations we can derive an expression for ds∗

dm

ds∗

dm
=
∂s∗

∂m

∣∣∣
h

=

∂s∗

∂r

∣∣∣
h

∂m
∂r

∣∣∣
h

=
τs∗

τm

∣∣∣
z=0

(43)
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Boundary layer - Region II

Remember eq.(27):

−r2
∣∣∣
m

ds∗

dm
(TB − To(s∗, po)) = m at z = h

Inserting ds∗

dm = τs∗
τm

∣∣∣
z=0

in this eq. and using the definition of m we

derive:

log θe = log θ∗es −
Cm

Cs

1

cp(TB − To)

(
v2 +

1

2
frv

)
(44)

From this relation we can derive the following estimation for the

wind speed (under the assumption rf << v)

v2 ≈ Cs

Cm
cp(TB − To) log

(
θe
θ∗es

)
(45)

and this is consistent with the estimation of the maximal wind

speed from the energetics of a Carnot process (see last lecture).
Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 27 / 43
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Carnot process

|~Vm|2 ≈
Ck

CD
εTB(s∗S − sB)

∣∣∣
m

; ε =
TB − Tout

TB
, s = cp log θe (46)

Remarks:

I The efficiency of a Carnot–process can be measured by the

quantity ε = TB−Tout
TB

I For TB = 295 K, To = 200 K this yields an efficiency ε ≈ 0.32

I Compare this to the efficiency of a car motor (η ≈ 0.56) or a

fridge (η ≈ 0.1)
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Boundary layer - the role of humidity

Assumption: θe is vertically uniform in PBL, i.e. θe = θes (surface)

using the definition of θe = T
π exp

(
Lq
cpT

)
we can derive:

log
θe
θea

∣∣∣
z=h

= − log
πs

πsa
+

(
L

cpTS
(q − qa)

) ∣∣∣
s

(47)

= − log
πs

πsa
+

(
L

cpTS
(q∗RH − q∗aRHa)

) ∣∣∣
s
(48)

with constant sea surface temperature TS and the ambients states

(subscript “a”); q∗ denotes the saturation humidity. From the

hydrostatic balance we can derive

∂log π

∂z
=

g

cpT
⇔ log

π

πs
=

∫ z=h

z=0

g

cpT
dz = log

πa

πsa
(49)
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Boundary layer - the role of humidity

The saturation specific humidity q∗ can be approximated as follows:

q∗ = q∗a
pa

p
= q∗a

(
π

πa

)− cp
R

= q∗a exp

(
−cp

R
log

π

πa

)
(50)

≈ q∗a

(
1− cp

R
log

π

πa

)
(51)

This yields the following relation for the boundary layer:

log
θe
θea

∣∣∣
z=h

= − log
πs

πsa

(
1 +

Lq∗aRH

RTS

)
+

Lq∗a
cpTS

(RH − RHa) (52)
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Region I (eye)

I Assumption of negligible flux of m, s∗ at top of the PBL does

not hold, but

I inside the eye the m and s∗ surfaces coincide due to the

“quasi” solid body rotation, i.e. eq.(44) also holds

I From eq.(52) we can derive that the relative humidity inside

the eye increases inwards

I Combining eq.(52) with the relation for the central pressure

eq.(34) this yields an explicit relation between central pressure

and relative humidity

log
πsc

πsa
≈
−ε Lq∗a

cpTS
(RHc − RHa) + 1

4
f 2r2

o
cpTB

1− ε
(
1 + Lq∗a RHc

RTS

) (53)

where ε = (TB − T o)/TB

Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 31 / 43

IA
C
E
T
H

In
st

itu
te

 fo
r 

A
tm

os
ph

er
ic

 a
nd

 C
lim

at
e 

S
ci

e
nc

e

Motivation Recap Steady state Thread Above the boundary layer Boundary layer Solution Cumulus para

Region I - Upper bound of pressure deficit

Emanuel, 1986Peter Spichtinger (IACETH) Hurricanes II: Steady state model May 29, 2007 32 / 43
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Region III (outer region)

The assumption of a negligible flux (of quantities s∗,m) at the top

of the PBL does not hold for the outer region, hence the equations

derived for the eyewall region do not hold

However, we can assume that due to the exchange by the turbulent

fluxes at the top of the PBL and the boundary layer induced

subsidence the relative humidity remains nearly constant

(RH ≡ RHa ≈ 80%)
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Region III (outer region)

From eq.(52) in combination of eq.(31) a relation between the

radius of maximal wind speed and the outer radius can be derived:

r2+2β
o ≈ r2β

m 2
TB − To

TB

Cs

Cm

TB

TS

Lq∗a
f 2

(1− RHas)(1 + β) (54)

In the outer region the tangential wind speed is of the form

V ∝ r−β, β ≡ 1− TB − To

TB

(
1 +

Lq∗aRHas

RTS

)
≈ 0.5 (55)

where ro denotes outer radius, rm radius of maximal wind speed,

TS surface temperature, TB boundary layer temperature, To

outflow temperature, ε = (TB − To)/TB

Remark: The decay of v in the outer region is slower that with the

Rankine model v ∝ r−1.
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Region III (outer region)

From eq.(54) the relationship between the radii, latitude (f ),

surface temperature TS , boundary layer temperature TB and

outflow temperature To (used in ε = (TB − To)/TB) can be

studied:

I As latitude increases (i.e. f ) ro becomes smaller and/or rm
becomes larger

I As TS increases ro increases and/or rm decreases

I As To decreases ro increases and/or rm decreases

See figures for this relationship
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Region III

Outer radius ro(km) as a function of maximum winds (i.e. rmax), surface

temperature TS and outflow temperature To Emanuel, 1986
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Region III

Emanuel, 1986
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Complete solution – distributionsCHAPTER 4. THE EMANUEL STEADY STATE HURRICANE MODEL 69

Figure 4.2: Distributions of: (a) absolute angular momentum (103 m2 s−1), (b)
saturation equivalent potential temperature, (c) gradient wind (m s−1), and (d) tem-
perature departure (oC) from the far environment at the same altitude, for the vortex
discussed above. (From Emanuel 1986)

4.4 The tropical cyclone as a Carnot heat engine

Emanuel suggests that the steady tropical cyclone may be regarded as a simple
Carnot heat engine in which air flowing inwards in the boundary layer acquires heat
energy (mostly in latent form2) from the sea surface, ascends, and ultimately gives off
heat at the much lower temperature of the upper troposphere or lower stratosphere.
A schematic of this heat engine is shown in Fig. 4.4. Air begins to flow inwards
at constant temperature along the lower boundary at radius ro and acquires an
incremental amount of heat

∆Q1 =

∫ θe

θea

cpTBd ln θe = cpTB ln

(
θe

θea

)
, (4.34)

2When water evaporates from the ocean, it takes heat out of the ocean and this energy then
resides in the water vapor content of the air. Because it does not immediately increase the temper-
ature of the air, it is called latent heat. Ultimately, when the water vapor condenses inside clouds,
the latent heat is converted to sensible heat and the temperature then actually increases somewhere
in the system.

Emanuel, 1986
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Complete solution – remarks

I Eyewall region is dominated by cyclone scale fluxes

I Outer region (outside the radius of maximal wind speed) is

controlled by turbulent fluxes from/to the PBL.
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Including cumulus parameterization

I Convection in the eye wall

I diabatic processes represented by saturated moist entropy

(reversible)

Cumulus convection redistribute heat acquired from sea surface to

keep the environment locally neutral to slantwise convection

(“quasi-equilibrium”)

Closure problem = radial distribution of subcloud layer entropy

Extension of hurricane model with cumulus parameterisation

(Emanuel, 1989; 1995)
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Including cumulus parameterization

layer, and deep precipitating clouds, which extend
through the depth of the model troposphere. The latent
heat acquired from the sea is mostly converted to latent
heat within the deep clouds, the amount depending on
the precipitation efficiency of the deep clouds, i.e., the
fraction of the upward moisture flux that subsequently
falls out of clouds as precipitation. In contrast, the
shallow clouds have zero precipitation efficiency and
produce no net heating, since all the condensed water is
ultimately reevaporated. The shallow clouds are impor-
tant because they transport high-entropy boundary-layer
air to the lower troposphere, where there is normally an
entropy minimum, and carry the low-entropy air into the
boundary layer.

The model carries prognostic equations for the satu-
ration moist entropy s* of the deep troposphere, as-
signed to the midtropospheric level; the moist entropy
sm and saturation moist entropy s*m of the lower tropo-
spheric layer; and the entropy of the subcloud layer, sb.
Shallow clouds occur whenever there is local convective
instability in the lower troposphere (i.e., when sb ! s*m),
and deep clouds occur when sb ! s*. In the formulation
of the dynamics the quantity s* is assumed to be a
constant along an angular momentum surface, as given
by Emanuel [1986], while the quantities s*m and s*m " sm
are used to characterize the temperature and humidity
of the lower troposphere. In particular, s*m is used for
predicting the occurrence of shallow convection. The
prognoses of subcloud-layer and lower troposphere
moist entropies are based on budget equations, obtained
by integrating the entropy equation through the depth of
the subcloud layer and lower troposphere, respectively.

A simple cloud model is used to calculate the slant-

wise mass flux of clouds, based on the parcel buoyancy,
and the fractional area of clouds in a radial grid interval
is set equal to the ratio of the height of the troposphere
divided by the radial grid size in physical space, if this
ratio is less than unity. Otherwise this ratio is set equal to
unity. In a sense, this allows the convection to be effec-
tively explicit in the inner core region, with air parcels
conserving their (reversibly defined) moist entropy.
However, explicit condensation is not allowed in Eman-
uel’s model. Note that the radial grid interval is constant
in potential radius coordinates but varies with radius in
physical space.

Figure 10 shows a schematic illustration of the airflow
in a developing tropical cyclone as represented by the
model. As explained earlier, for a cyclone to spin up,
lower tropospheric air above the boundary layer must
flow inward. Emanuel argues that this air has a relatively
low moist entropy and if it were to ascend directly into
the vortex core, the core entropy would reduce, the core
would cool, and the cyclone would decay. Instead, he
argues, the air descends within shallow clouds, within
precipitating downdrafts, and outside of clouds because
of Ekman suction. This descent of relatively dry air
reduces the entropy of the subcloud layer. Emanuel
emphasizes that the vortex core can become warmer
than its environment only if the surface fluxes are large
enough to offset this drying effect on the subcloud layer.
He notes that in a developing storm, individual air
parcels flow inward in the lower troposphere, sink down-
ward in downdrafts, receive entropy from the ocean, and
then ascend in deep convective clouds.

A noteworthy feature of the model behavior is the
threshold intensity of the initial vortex required for the

Figure 9. Vertical structure of the hurricane model formulated by Emanuel [1989]. The moist entropy s*
represents a vertically averaged value but is assigned to the middle level; it characterizes the mean (virtual)
temperature of the troposphere. Entropy s is calculated in the subcloud layer (sb) and in the lower
tropospheric layer (sm). The saturated moist entropy in the lower tropospheric layer (s*m) is used to predict
shallow cumulus activity, which occurs when sb ! s*m. Deep clouds transfer mass from the subcloud layer to
the top layer, while shallow clouds exchange entropy between the lower troposphere and the subcloud layer
without producing a net mass flux.

480 ● Smith: CUMULUS CONVECTION IN HURRICANES 38, 4 / REVIEWS OF GEOPHYSICS

Smith, 2000
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Including cumulus parameterization

vortex to amplify. This behavior is attributed to the
damping effects of subsidence and cumulus downdrafts
into the subcloud layer, which reduce the entropy of this
layer. Only if the surface entropy fluxes are large enough
to outweigh this cooling effect (i.e., if the surface wind
speeds are sufficiently large) can intensification occur.
The threshold intensity is a decreasing function of
midtropospheric relative humidity, an increase in which
reduces the effects of downdrafts.

Emanuel [1995] reformulated the foregoing model
using a convection scheme based on the concept of
boundary-layer quasi-equilibrium [see Raymond, 1997].
The basic configuration is shown in Figure 11. The
thermodynamic variables include the saturation entropy
at the top of the boundary layer s*!, which is assumed to
equal the saturation entropy through the depth of the
troposphere, s*; the lower troposphere entropy sm; and
the subcloud-layer entropy sb. The model includes prog-
nostic equations for these quantities, but in regions of
convection (sb " s*!), sb is set equal to s*! on the
assumption that convection establishes a neutral profile
in s*. A convective mass flux Mueq is calculated on the
assumption that there is an exact balance between the
ocean surface entropy flux and the downward flux of low
entropy air through the top of the boundary layer, ne-
glecting the radiative cooling of the boundary layer, i.e.,

Md ! we " #Fs/$sb # sm%, (19)

where Fs denotes the surface energy flux and we is the
vertical velocity in clear air. The closure requires an
assumption about the relationship between convective
updraft mass flux Mu and the downdraft mass flux Md.
(Note that Emanuel uses the term “mass flux” for the
vertical velocity in cloudy air averaged over the area of a
grid column. In his theory the mass flux is positive when
the motion is upward.) These quantities are related by
the equation

Md " #$1 # !p% Mu, (20)

where !p is a bulk precipitation efficiency. Emanuel
points out that, in general, !p is a function of the distri-
bution of cloud water and the environmental tempera-
ture and humidity structure. If all the rain evaporates,
!p & 0 and Md & #Mu, consistent with the fact that
there is no net latent heat release. On the other hand, if
!p & 1, Md & 0 and there is no evaporation to drive a
downdraft. Then all the latent heat is available to warm
the air. Emanuel specifies !p as a function of the relative
humidity in the lower troposphere; i.e.,

!p " $sm # smi%/$sb # smi%, (21)

where smi denotes the value of sm in the initial state.
Finally, the actual convective mass flux, Mu, is obtained
by relaxation toward the equilibrium mass flux on a
timescale 'c, assumed to be a few hours; i.e.,

Figure 10. Illustration of airflow in a developing tropical cyclone as represented by Emanuel’s [1989] model.
For a cyclone to spin up, lower tropospheric air above the boundary layer must flow inward. This air has a
relatively low moist entropy, and if it were to ascend directly into the vortex core, the core entropy would
reduce, the core would cool, and the cyclone would decay. Instead, the air descends within shallow clouds,
within precipitating downdrafts, and outside of clouds because of Ekman suction. This descent of relatively dry
air reduces the entropy of the subcloud layer. The vortex core can become warmer than its environment only
if the surface fluxes are large enough to offset this drying effect on the subcloud layer. In a developing storm,
individual air parcels flow inward in the lower troposphere, sink downward in downdrafts, receive entropy
from the ocean, and then ascend in deep convective clouds.

38, 4 / REVIEWS OF GEOPHYSICS Smith: CUMULUS CONVECTION IN HURRICANES ● 481

Smith, 2000
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Including cumulus parameterization

DhMu

Dt !
Mueq " Mu

!c
, (22)

where Dh/Dt is the horizontal part of the material de-
rivative. Emanuel [1995, p. 3964] states that the sensitiv-
ity of the calculations to the choice of !c appears to be
weak. Unlike the earlier scheme [Emanuel, 1995], shal-
low clouds are not considered explicitly, but the moist-
ening effects of convection are included by prescribing
the detrainment of entropy in the lower troposphere as
a function of Mu and !p.

The scheme can be understood in terms of Figure 7 if
Mc in that figure is associated with the net mass flux
Mu " Md in the Emanuel scheme. Again, Mu " Md is
related to the mean vertical velocity averaged over a grid
interval just above the boundary layer, w! ", by the rela-
tionship equivalent to (12), i.e.,

w! " ! Mu # Md # we. (23)

Eliminating Mu and Md from (19), (20), and (23) gives
an expression for we, namely,

we ! #!pFs/$sb " sm% # $1 " !p%w! ". (24)

Thus the direction of clear-air vertical motion depends
on the magnitude of the surface entropy flux in relation
to w! ", which is assumed to be determined by the large-
scale flow as before. Typically, if w! " & 0 and surface
fluxes are sufficiently weak, there will be ascent in the
clear air and cooling averaged over the grid box, at least
just above the boundary layer. On the other hand, aver-
aged over the grid box, there is descent and warming in
the clear air if

Fs $ $1 " !p%$sb " sm%w! "/!p. (25)

If the large-scale circulation is associated exclusively
with the convection as depicted in Figure 3, then w! " '
0 and the condition (25) is always satisfied if sb & sm.
That is, the convection heats the atmosphere just above
the boundary layer, and from the assumption that layer
s*" ( s*, the troposphere will warm also. The opposite
case of tropospheric cooling occurs when w! " & 0 and is
large enough to violate (25). It is conceivable that this
might happen, for example, if a vortex moves rapidly
over significantly cooler water, so that surface moisture
fluxes are abruptly reduced. Then, for a time, the bound-
ary-layer-induced upflow in the vortex core may domi-
nate any remaining convectively induced subsidence,
thereby cooling the core and allowing the vortex to
weaken. This cooling may happen also at other times
when the vortex is weakening.

The model behavior using this scheme is very similar
to that described by Emanuel [1989]. In particular, the
near saturation of a mesoscale column of the tropo-
sphere in the cyclone core is a prerequisite for intensi-
fication. Two limitations of all three models described in
this subsection are the assumption of moist neutrality
outside the convective region and the absence of an
explicit water cycle.

The use of potential-radius coordinates in all three
models provides higher resolution in the vortex core and
facilitates the parameterization of slantwise convection,
including the angular momentum transport. However,
the use of these coordinates complicates the generaliza-
tion of the models to three dimensions. Moreover, in

Figure 11. Vertical structure of the hurricane model formulated by Emanuel [1995]. The notation is the
same as in Figure 7. In this scheme the convective downdraft mass flux Md is set proportional to the updraft
mass flux Mu. The constant of proportionality is related to the precipitation efficiency !p by the formula ) (
#(1 # !p). An equilibrium value Mueq for Mu is calculated on the assumption that Dsb/Dt is zero. Finally,
Mu is obtained by relaxation to Mueq on a timescale !c.
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