Models predict a decrease in tropical cyclone activity

Increased tropical Atlantic wind shear in model projections of global warming [Vecchi, 2007]

Peter Barmet, Thomas Kuster, André Welti

Department of Environmental Sciences ETH Zürich

Cloud Dynamics, June 18, 2007

Outline

2 Connections

5 Conclusion

Impact of Vertical Wind Shear

Factors

- Several environmental factors influence the development of tropical cyclones
- You know that from the lectures.

Vertical Wind Shear

Of particular importance: vertical wind shear (V_s)

- Big $V_s \Rightarrow$ inhibits the development of tropical cyclones
- $V_s > 10 \,\mathrm{ms}^{-1} \Rightarrow$ impact is substantial

"strong shear of 15 ms^{-1} literally tore an intense strom apart in about one day" [Frank and Ritchie, 2001]

Connections

What depends on what

- weakening of the Pacific Walker circulation
- stronger wind shear in the Caribbean Sea
- Is break down of tropical cyclones

Pacific Walker Circulation

Source: [Matthias Forkel]

Peter Barmet, Thomas Kuster, André Welti

Models predict a decrease in tropical cyclone activity

Weakening of the Pacific Walker Circulation

Simulation

- Different rate of response to surface warming of water vapour and precipitation
- weakening of the boundary layer/troposphere mass exchange
- \approx 5% per °C warming

[Vecchi, 2006]

Correlation between Shear and Walker Weakening

- Box indicates the region of strong ensamble mean shear increase.
- Explains \approx 50% of the inter-model variability in shear enhancement region (SER).

Profiles of Wind at Start and End of 21st Century

Shear Enhancement Region (SER)

Main Development Region (MDR)

Definition

$$V_s = |u_{850} - u_{200}|$$

Main Development Region (MDR)

Peter Barmet, Thomas Kuster, André Welti

Models predict a decrease in tropical cyclone activity

June–November ensemble mean: V_s

Other Tropical Cyclones Related Indices

Relative humidity at 700 hPa

Conclusion

Change in Wind Shear

- Within 5° of the Equator a noticeable weakening of $V_s \Rightarrow$ development of tropical cyclones is not possible in this region (lack of corriolis force)
- Main Development Region (MDR) no change in wind shear
- Shear Enhancement Region, more wind shear ⇒ weakening of tropical cyclones

List of figures I

G. A. Vecchi et al.

Increased tropical Atlantic wind shear in model projections of global warming.

Geophysical Research Letters, 34:L08702, 2007.

Matthias Forkel

Walker-Zirkulation und El Niño

http://www.m-forkel.de/klima/walkz-eln.html

Bibliography I

G. A. Vecchi et al.

Increased tropical Atlantic wind shear in model projections of global warming.

Geophysical Research Letters, 34:L08702, 2007.

G. A. Vecchi et al.

Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing.

Nature, 441, 73-76, 2006.

W. M. Frank and E. A. Ritchie

Effects of vertical wind shear on the intensity and structures of numerically simulated hurricanes. *Monthly Weather Review*, 129, 2249–2269.

June–November ensemble mean: V_s

