1. SHALLOW WATER WAVES AND HYDRAULIC THEORY

Let us consider the shallow water equations from Problem Sheet IV, i.e.

$$
\begin{aligned}
u_{t}+u u_{x}+v u_{y}-f v & =-g^{*} h_{x} \\
v_{t}+u v_{x}+v v_{y}+f u & =-g^{*} h_{y} \\
h_{t}+u h_{x}+v h_{y}+h u_{x}+h v_{y} & =0
\end{aligned}
$$

(a) Taking the non-dimensionalized equations

$$
\begin{aligned}
R_{0}\left[\tilde{u}_{\tilde{t}}+\tilde{u} \tilde{u}_{\tilde{x}}+\tilde{v} \tilde{u}_{\tilde{y}}\right]-\tilde{v} & =\left(\exists R_{0}\right) \tilde{h}_{\tilde{x}} \\
R_{0}\left[\tilde{v}_{\tilde{t}}+\tilde{u} \tilde{v}_{\tilde{x}}+\tilde{v} \tilde{v}_{\tilde{y}}\right]+\tilde{u} & =\left(\exists R_{0}\right) \tilde{h}_{\tilde{y}} \\
\tilde{h}_{\tilde{t}}+\tilde{u} \tilde{h}_{\tilde{x}}+\tilde{v} \tilde{h}_{\tilde{y}}+\tilde{h} \tilde{u}_{\tilde{x}}+\tilde{h} \tilde{v}_{\tilde{y}} & =0
\end{aligned}
$$

where $R_{0}=\frac{U}{f L}, \exists=-g^{*}\left(\frac{H}{U^{2}}\right)$ and $g^{*}=\frac{\rho_{1}-\rho_{2}}{\rho_{1}} g$. Show that the Coriolis force can be neglected for a system with: $U \sim 10 \mathrm{~m} \mathrm{~s}^{-1}, f \sim 10^{-4} \mathrm{~s}^{-1}, L \sim 1 \mathrm{~m}, H \sim 10 \mathrm{~m}$ and $\rho_{1} \gg \rho_{2}$ (e.g. water - air).
(b) Rewrite the dimensionalized equations without the Coriolis force and linearize with $u=\bar{u}+u^{\prime}, h=\bar{h}+h^{\prime}$ and $v=0$ and show that h^{\prime} is independent of y.
(c) Derive the wave equation for h^{\prime} in the form:

$$
h_{t t}^{\prime}=\left(g^{*} \bar{h}-\bar{u}^{2}\right) h_{x x}^{\prime}-2 \bar{u} h_{t x}^{\prime}
$$

(d) Find the dispersion relation for ω with $h^{\prime}=\hat{h^{\prime}} e^{i(k x-\omega t)}$, where $\hat{h^{\prime}}$ is the amplitude of the wave.
(e) Show that the frequency ($\nu=\frac{\omega}{2 \pi}$) of the waves propagating in the postive x-direction increases/decreases as \bar{u} increases/decreases. This is known as Doppler Shift and can be observed for sound waves everytime a police car or ambulance passes you with the siren turned on.
(f) Show that for the waves obtained in (1d) $c_{p h}=c_{g}$ holds, where $c_{p h}$ is the phase velocity and c_{g} is the group velocity. Note that for $\bar{u}=0$ you will get the phase speed of linear shallow water gravity waves without a background flow $\left(c_{p h}=\sqrt{g^{*}} \bar{h}\right)$.
(g) When orography has to be included in the shallow water equations the linearized equations from (1b) yield:

$$
\begin{align*}
u_{t}^{\prime}+\bar{u} u_{x}^{\prime} & =-g^{*} h_{x}^{\prime} \tag{1}\\
h_{t}^{\prime}+\bar{u}\left(h_{x}^{\prime}-h_{x}^{b}\right)+\bar{h} u_{x}^{\prime} & =0 \tag{2}
\end{align*}
$$

where h^{b} is a function of x only and represents the height of orography.
Assuming steady-state derive an equation for u_{x}^{\prime} in the form:

$$
u_{x}^{\prime}=\frac{\frac{g^{*}}{\bar{u}} F r^{2}}{\left(1-F r^{2}\right)} h_{x}^{b}
$$

where $F r=\frac{\bar{u}}{\sqrt{g^{*} \bar{h}}}=\frac{\bar{u}}{c_{p h}}$ is the Froude number.
(... sheet continues on next page ...)
(h) Assuming a single hill in the flow domain draw a sketch for supercritical flow $(F r>0)$ and subcritical flow ($F r<0$), respectively (nothing needs to be calculated here!). The sketch should include h as well as indications if u is greater or less than \bar{u}. (Hint: To be able to draw h you will need to utilize equation 1. Best if you define regions in your sketch: flow before reaching hill, flow above hill, flow after hill.)
(i) Draw a sketch also for the case where we observe a transition of flow regimes at the top of the hill from subcritical to supercritial flow. (Hint: Define regions in your sketch: flow before reaching hill, height of hill increasing, height of hill decreasing, flow after hill.) This flow setup is called 'shooting flow', due to the large u-velocities observed immediately behind the obstacle. Similar flows are observed during Föhn or Bora events or in shallow rivers with larger rocks underneath the water surface.
2. More linear shallow-water waves

Verify that the linear shallow-water-system

$$
\begin{aligned}
u_{t}^{\prime}-f v^{\prime} & =-g^{*} h_{x}^{\prime} \\
v_{t}^{\prime}+f u^{\prime} & =-g^{*} h_{y}^{\prime} \\
h_{t}^{\prime}+\bar{h}\left(u_{x}^{\prime}+v_{y}^{\prime}\right) & =0
\end{aligned}
$$

has a solution (valid in the domain $y>0$) of the form:

$$
\begin{aligned}
v^{\prime} & =0 \\
h^{\prime} & =\hat{h}^{\prime}(y) \sin (k x-\omega t) \\
u^{\prime} & =\hat{u}^{\prime}(y) \sin (k x-\omega t)
\end{aligned}
$$

where $\hat{h^{\prime}}(y)$ and $\hat{u^{\prime}}(y)$ are the amplitutes (only varying in the y-direction) of h^{\prime} and u^{\prime}, respectively.
(a) Derive the wave-equation for h^{\prime}, determine the dispersion relation and evaluate the phase speed $c_{p h}$.
(b) Show that $\hat{u}^{\prime}(y)=\frac{g^{*}}{c_{p h}} \hat{h}^{\prime}(y)$.
(c) Deduce that $\hat{h}^{\prime}(y)=A e^{-\mu y}$ is one solution, where A is now the amplitude of $\hat{h}^{\prime}(y)$ and determine the decay rate $(1 / \mu)$ as a function of \bar{h}, g^{*}, and f.
(d) Determine $c_{p h}$ and $1 / \mu$ for $\bar{h} \sim 10 \mathrm{~m}, f \sim 10^{-4} \mathrm{~s}^{-1}$ and $\rho_{1} \gg \rho_{2}$.
(e) What would be the maximum velocity perturbation u^{\prime} with the assumed values of (2d) and $A=1 \mathrm{~m}$ (i.e. a wave with maximum Amplitude of 1 m).
(f) Taking the same values as in (2d), calculate the amplitude of a wave with perturbation velocity $u^{\prime}=10 \mathrm{~m} \mathrm{~s}^{-1}$? Does the linearization for our shallow water system still hold for this wave?

