1. AtMospheric eddy
(a) Radial velocity $v_{c}=10 \mathrm{~ms}^{-1}$ at R, radius $R=500 \mathrm{~km}$

- Circulation around a circle:

$$
\begin{aligned}
C=\int_{0}^{2 \pi} v_{c} d_{c} & =2 \pi \cdot R \cdot v_{c} \\
& =2 \pi \cdot 5 \cdot 10^{5} \mathrm{~m} \cdot 10 \mathrm{~ms}^{-1} \\
& =\pi \cdot \mathbf{1 0}^{\mathbf{7}} \mathrm{m}^{\mathbf{2}} \mathrm{s}^{\mathbf{- 1}}
\end{aligned}
$$

- Mean vorticity:

$$
\begin{aligned}
\zeta & =\frac{C}{\pi R^{2}}=\frac{2 \pi R v_{c}}{\pi R^{2}}=\frac{2 v_{c}}{R} \\
& =\mathbf{4} \cdot \mathbf{1 0}^{-\mathbf{5}} \mathrm{s}^{-\mathbf{1}}
\end{aligned}
$$

(b) Vorticity in polar coordinates (see lecture notes page ??):

$$
\zeta=\frac{1}{r} \frac{\partial}{\partial r}(r v)=\frac{v}{r}+\frac{\partial v}{\partial r}
$$

Assuming that there is no vorticity in the region outside R, leads to:

$$
\zeta= \begin{cases}\frac{2 v_{c}}{R} & r=R \\ 0 & r>R\end{cases}
$$

Derive the expression for $v(r)$ if $r>R(\xi$ must be 0$)$:

$$
\begin{aligned}
\frac{v}{r}+\frac{\partial v}{\partial r} & =0 \\
\frac{\partial v}{v} & =-\frac{\partial r}{r} \\
\ln v & =-\ln r+K \\
v(r) & =K \cdot e^{-\ln r} \\
v(r) & =\frac{K}{r}
\end{aligned}
$$

Here K is a constant. That means that the velocity decreases outside R with K / r !
Derive the value of K with the boundary condition $v=v_{c}=10 \mathrm{~ms}^{-1}$ if $r \rightarrow R$.

$$
\begin{aligned}
K & =v_{c} \cdot R \\
& =5 \cdot 10^{6} \mathrm{~m}^{2} \mathrm{~s}^{-1}
\end{aligned}
$$

Now we can calculate the the velocity at radius 1000 km entierly induced by the vorticity within 500 km :

$$
\begin{aligned}
v(r) & =\frac{K}{r}=\frac{v_{c} \cdot R}{r} \\
v(1000 \mathrm{~km}) & =\frac{10 \mathrm{~ms}^{-1} \cdot 5 \cdot 15^{5} \mathrm{~m}}{10^{6} \mathrm{~m}} \\
& =\mathbf{5} \mathrm{ms}^{-\mathbf{1}}
\end{aligned}
$$

Two velocity fields, one from the uniform flow v_{1} and one from the two-dimensional vortex v_{2}.

- v_{1} : The streamfunction ψ in polar coordinates is given by $\psi=-U r \sin \Theta$ (in Cartesian coordinates $\psi=-U \cdot y$), therefore:

$$
\begin{aligned}
& u_{1}=-\frac{1}{r} \frac{\partial \psi}{\partial \Theta}=U \cos \Theta \\
& v_{1}=\frac{\partial \psi}{\partial r}=-U \sin \Theta
\end{aligned}
$$

- v_{2} :

$$
v_{2}=\frac{C}{2 \pi a}=\frac{\Lambda \pi a^{2}}{2 \pi a}=\frac{\Lambda a}{2}
$$

Vortex in stationary flow:

$$
v=v_{1}+v_{2}=\binom{U \cos \Theta}{-U \sin \Theta+\frac{\Lambda a}{2}}
$$

The stagnation point is located where $v=0\left(U=\frac{\Lambda a}{2}\right)$:

$$
v=\frac{\Lambda a}{2}\binom{\cos \Theta}{\sin \Theta+1}=0
$$

Therefore:

$$
\begin{aligned}
\cos \Theta & =0 \\
\sin \Theta & =1
\end{aligned}
$$

That means that the stagnation point is located at the edge of the vortex $(r=a)$ at $\Theta=\pi / 2$.

3. Rossby and Ekman numbers

Rossby number: $R_{0}=\frac{U}{f L} \quad\left(\frac{\text { velocity }}{\text { coriolis }}\right)$
Ekman number: $E=\frac{\nu}{f L^{2}} \quad\left(\frac{\text { friction }}{\text { coriolis }}\right)$

	$L[\mathrm{~m}]$	$U\left[\mathrm{~ms}^{-1}\right]$	$\nu\left[\mathrm{m}^{2} \mathrm{~s}^{-1}\right]$	R_{0}	E
air	10^{6}	10^{1}	$1.5 \cdot 10^{-5}$	10^{-1}	$1.5 \cdot 10^{-13}$
water	10^{5}	10^{-2}	$1.0 \cdot 10^{-6}$	10^{-3}	$1.0 \cdot 10^{-12}$

R_{0} and $E \ll 1$ for atmospheric and oceanic flows. That means the inertial (U) and friction (ν) effects are small compared with the Coriolis force.

Remark: $R_{0_{\text {air }}}$ is larger than $R_{0_{\text {water }}}$. The inertial effects are more important in the atmosphere than int the ocean.
4. Geostrophic approximation

Navier-Stokes equation (see lecture notes page 101):

$$
R_{0} \frac{D v}{D t}-(\vec{k} \times \vec{v}) f=-\frac{1}{\rho} \vec{\nabla} p+E \nabla^{2} \nu
$$

With $R_{0}=$ Rossby number and $E=$ Ekman number.
For large scale flows (synoptic scale) the Rossby- and Ekman numbers are $\ll 1$ as seen in the solution above. Therefore term (1) and (4) can be neclected. A geostrophic balance exists between the Coriolis- and the pressure gradient force.

$$
\begin{aligned}
f v & =\frac{1}{\rho} \frac{\partial p}{\partial x} \\
f u & =-\frac{1}{\rho} \frac{\partial p}{\partial y}
\end{aligned}
$$

If we don't split the equation in a meridional and zonal component we get:

$$
f \vec{v}=\frac{1}{\rho} \frac{\partial p}{\partial \tilde{x}}
$$

Geostrophic velocity:

$$
\begin{aligned}
\vec{v} & =\frac{1}{\rho f} \frac{\partial p}{\partial \tilde{x}} \\
& =\frac{1}{1 \mathrm{~kg} \mathrm{~m}^{-3} \cdot 10^{-4}} \frac{10^{3} \mathrm{~Pa}}{10^{6} \mathrm{~m}} \\
& \sim \mathbf{1 0 \mathrm { ms } ^ { - 1 }}
\end{aligned}
$$

