1. Atmospheric eddy

- (a) A circular eddy in the atmosphere has a velocity of 10 ms^{-1} at a radius (R) of 500 km. What is the value of the circulation at this radius and what is the mean value of the vorticity within R?
- (b) If there is no vorticity in the region outside of R, what is the velocity at a radius of 1000 km? (Hint: If the vorticity is zero and the flow is circularly symmetric then $(1/r) \cdot (rv)_r = 0$)).

2. Two-dimensional vortex

A two-dimensional vortex of uniform vorticity Λ and a radius a is located in an uniform flow moving at a velocity U. Show that at the edge of the vortex there will be a stagnation point if $(U/\Lambda \cdot a)=0.5$.

3. Rossby and Ekman numbers

If large scale atmospheric and oceanic eddies are characterised by velocity and length scales such that:

- atmosphere: $U = 10 \,\mathrm{ms}^{-1}$, $L = 1000 \,\mathrm{km}$
- ocean: $U = 0.01 \text{ ms}^{-1}$, L = 100 km

What are the typical values for the Rossby Number and the Ekman Number of such flows? (Note that the Coriolis parameter $f = 2\Omega \sin \phi$ is order of 10^{-4}s^{-1}).

4. Geostrophic approximation

Surface pressure gradients on weather charts are of the order of 10 hPa per 1000 km. What would be the corresponding value of the geostrophic velocity?