1. Laminar Flow in a water channel

- A sluice gate controls the discharge of water down a channel. If the discharge is increased by 20%, what will be the percentage change in the depth of the water? Compare lecture notes on page 53 .
- Is the percentage in the depth dependent upon the viscosity of the water? Is it dependent upon the temperature?

2. Water Flow

If the velocity w in the flow system considered on page 54 in the lecture notes is $10^{-2} \mathrm{~ms}^{-1}$, how deep is the boundary layer of water at normale temperature? How deep would it be for air with the same specifications?
3. 2 D FLOW FIELD

A two dimensional flow field occupying the domain $\mathrm{y}>0$ is specified in terms of the streamfunction ψ, such that

$$
\psi=A \cdot \sin (k x) \cdot e^{-l y}
$$

(a) Sketch the streamfunction ψ and the corresponding streamlines.
(b) Derive expressions for the horizontal velocity components (u, v)
(c) Derive expressions for the vertical component of the vorticity ζ
(d) Under what relative values ' k ' and ' l ' will the streamfunction ψ be a solution of: $\frac{D}{D t} \zeta=\nu \nabla^{2} \zeta \quad$ where $\zeta=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}$ is the vorticity.

Hint: Use a software package such as Maple, Mathematica, Matlab, ... if you have access.
4. Shallow water system

Consider the one-spare dimension shallow water system:

$$
\begin{aligned}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}-f v & =-g \frac{\partial h}{\partial x} \\
\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+f u & =0 \\
\frac{\partial h}{\partial t}+u \frac{\partial h}{\partial x}+h \frac{\partial u}{\partial x} & =0
\end{aligned}
$$

or written as:

$$
\begin{aligned}
u_{z}+u u_{x}-f v & =-g h_{x} \\
v_{z}+u v_{x}+f v & =0 \\
h_{z}+v h_{x}+h u_{x} & =0
\end{aligned}
$$

Non-dimensionalise this set to the form:

$$
\begin{aligned}
R_{0}\left[\tilde{u}_{\tilde{z}}+\tilde{u} \tilde{u}_{\tilde{x}}\right]-\tilde{v} & =\left(\exists R_{0}\right) \tilde{h}_{\tilde{x}} \\
\left.R_{0} \tilde{v}_{\tilde{z}}+\tilde{v}_{\tilde{x}}\right]+\tilde{u} & =0 \\
\tilde{h}_{\tilde{z}}+\tilde{u} \tilde{h}_{\tilde{x}}+\tilde{h}_{\tilde{u}} & =0
\end{aligned}
$$

where

$$
\tilde{u}=\frac{u}{U} \quad \tilde{v}=\frac{v}{V} \quad \tilde{x}=\frac{x}{L} \quad \tilde{y}=\frac{y}{L} \quad \tilde{h}=\frac{h}{H} \quad \tilde{t}=\left(\frac{U}{L}\right) t \quad R_{0} \frac{U}{f L}
$$

(a) What is the dimensionless parameter \exists ?
(b) Consider some observed motions such that $U \sim 1 \mathrm{cms}^{-1}, L \sim 10 \mathrm{~km}$ and $H \sim 10 \mathrm{~m}$
What are the characteristic values of R_{0} and \exists ?
(c) To build a laboratory analogue of the lake flow, what should be the depth H of the model, and how quickly must the laboratory model be rotated? Assume model is such that $U \sim$ $1 / 10 \mathrm{cms}^{-1}$ and $L \sim 1 \mathrm{~m}$.

