1. Streamlines

Sketch the streamline pattern (see page 19 for the definition) for the following three flow examples. The velocity components in the three referenced orthogonal dirctions are given by:
(a) $(-a x, a y, 0)$ in Cartesian Coordinates
(b) $(m / r, 0,0) \quad$ in Cylindrical Polar Coordinates
(c) $(0, k / r, 0)$ in Cylindrical Polar Coordinates

2. Vorticity and Divergence

Calculate the values of the vorticity and divergence of the three flow fields prescribed in the above question. For (b) and (c) distinguish between $r \neq 0$ and $r=0$.

3. Divergence, Deformation and Vorticity

A two-dimensional flow field is defined in Cartesian Coordinates by:

$$
\begin{aligned}
& u=-\left(x^{2}+(y+a)^{2}-r^{2}\right) \\
& v=\left(x^{2}+(y-a)^{2}-r^{2}\right)
\end{aligned}
$$

Here r and a are constants with $\left(r^{2}>a^{2}\right)$ and the corresponding streamline field is shown below.
(a) Indicate where you anticipate the regions of large divergence, deformation and vorticity.
(b) Plot the flow field (u, v) and the solutions from (a) using a programm like Maple, Mathematica, Matlab.

$$
\begin{aligned}
& \mathrm{x}, \mathrm{y} \text {-axis }=(-4,4), r=3, a=1
\end{aligned}
$$

4. Divergence

If a fluid parcel experiences a 10% change in density in two hours, what value of divergence does it undergo? Indicate what happens if the density change is $+10 \%$ or -10%.

