

Kelvin equation

Ulrike Lohmann (IACETH)

Kelvin equation

▶ So far we have ignored the curvature effect. We introduce it by starting from Gibbs free energy:

$$\Delta G = G_{droplet} - G_{pure \ vapor} \tag{1}$$

where the drop with radius r contains n molecules.

• Let N_T the initial number of molecules of vapor. After the drop forms, number of vapor molecules is reduced to: $N_v = N_T - n$. Then, if g_v and g_l are the Gibbs free energies of a molecule in the vapor and liquid phase:

$$\Delta G = n(g_l - g_v) + 4\pi r^2 \sigma = \frac{4\pi r^3}{3\alpha_l}(g_l - g_v) + 4\pi r^2 \sigma \quad (2)$$

where $4\pi r^2 \sigma$ is the free energy associated with an interface with radius of curvature r and surface tension σ .

Condensational growth

Kelvin equation ▶ Now evaluate, g₁ - g_v, the difference in Gibbs free energy per molecule of the liquid and vapor state: Start from $dg = \alpha de - s dT$ with constant temperature: $dg = \alpha de = (\alpha_l - \alpha_v) de$ • since $\alpha_v >> \alpha_l$ for all condition of interest to us $dg = -\alpha_v de$ and applying the ideal gas law of water vapor $\alpha_{\rm v}=k~T/e$ $g_{l} - g_{v} = -\alpha_{v} de = -kT \int_{e_{s}(\infty)}^{e_{s}(r)} \frac{de}{e} = -kT ln \frac{e_{s}(r)}{e_{s}(\infty)}$ where $e_s(\infty)$ is the equilibrium water vapor pressure over a flat surface, and $e_s(r)$ is the equilibrium partial pressure over the curved water surface. Ulrike Lohmann (IACETH) Condensational growth

Kelvin equation

Dec 7, 2005

(3)

(4)

(5)

Dec 7, 2005

• Define saturation ratio $S = \frac{e_s(r)}{e_s(\infty)}$:

$$\Delta G = -\frac{4\pi r^3 kT}{3\alpha_l} \ln S + 4\pi r^2 \sigma \tag{6}$$

From $\frac{\partial \Delta G}{\partial r} = 0$ obtain Kelvin equation which says that the vapor pressure in equilibrium is larger over a droplet with radius r than over a bulk surface:

$$e_{s}(r) = e_{s}(\infty) \exp\left(\frac{2\sigma\alpha_{l}}{kTr}\right) = e_{s}(\infty) \exp\left(\frac{2\sigma}{R_{v}\rho_{l}Tr}\right)$$
(7)

- where σ is the surface tension \approx 0.075 N/m. Def: Surface tension: free energy per unit surface area of the liquid. Work per unit area required to extend the surface of liquid at constant temperature
- net growth of droplet with radius r for $e e_s(r) > 0$ and decay for $e - e_s(r) < 0$. Here e is the actual ambient vapor pressure.

Condensational growth

d formation	Kelvin equation 0000●	Raoult's law	Köhler curve	Condensation
Kelvi	n equation			
Critica	l radii for droplet	formation in cle	ean air:	
and a second	<i>r</i> * =	$\frac{2\sigma}{R_{\rm v}\rho_{\rm I}T\ln S}; S =$	$=rac{e}{e_{sat}(\infty)}$	(8)
Acience -	Saturation ratio S	Critical radius r*(µm)	number of molecules n	
	1 1.01	∞ 0.12	∞ 2.47 × 10 ⁸	
	1.1	0.0126 2.96 × 10 ⁻³	2.81 × 10 ⁵ 3645	
spirei	2	1.73×10^{-3}	730	
Allio	3 10	1.09×10^{-4} 5.22 × 10 ⁻⁴	183 20	
				_
lllrike Lohm	ann (IACETH)	Condensational grow	th	Dec 7, 2005

Raoult's Law

For a plane water surface the reduction in vapor pressure due to the presence of a non-volatile solute may be expressed:

Raoult's law

$$\frac{e'}{e_s(\infty)} = \frac{n_o}{n+n_o} \tag{9}$$

where e' is the equilibrium vapor pressure over a solution consisting of n_o molecules of water and n molecules of solute.

- If the vapor pressure of the solute is less than that of the solvent, the vapor pressure is reduced in proportion to the amount of solute present.
- ▶ For solutions in which the dissolved molecules are dissociated n must be multiplied by the degree of ionic dissociation i (van't Hoff factor).

T

Raoult's lav

Ulrike Lohmann (IACETH)

Condensational growth

Dec 7, 2005

Köhler curve

► Combination (multiplication) of Kelvin and Raoult's equation (evaluating it for e['](r)/e_s(r)) gives the Koehler curve:

$$\frac{e'(r)}{e_s(\infty)} = \left(1 - \frac{b}{r^3}\right) exp\left(\frac{a}{r}\right)$$
(15)

Köhler curve

with

Π

$$a = \frac{2\sigma}{\rho_I R_v T} \approx \frac{3.3 \cdot 10^{-7}}{T} [m]$$
(16)

For r not too small, a good approximation is $exp(\frac{a}{r}) \sim 1 + \frac{a}{r}$

$$\frac{e'(r)}{e_s(\infty)} = 1 + \frac{a}{r} - \frac{b}{r^3}$$
(17)

▶ 1. term: surface molecules possess extra energy

2. term: solute molecules displacing surface water molecules

Condensational growth

Köhler curve

• The critical radius r^* and critical supersaturation S_s^* ($S_s = S - 1$) are given by:

r*	=	$\sqrt{\frac{3b}{a}}$	(2	18)
S_s^*	=	$\sqrt{\frac{4a^3}{27b}}$	(2	19)

Köhler curve

Köhler curve represents equilibrium conditions

Large particles have large equilibrium radii and may have insufficient times to grow to their equilibrium size in clouds with strong updrafts.

- As the size of a droplet increases, the equilibrium vapor pressure above its surface decreases (Kelvin's equation).
- The curves for droplets containing fixed masses of salt approach the ► Kelvin curve as they increase in size, since the droplets become increasingly dilute solutions.

Condensational growth

Ulrike Lohmann (IACETH)

Π

Dec 7, 2005

Dec 7, 2005

Droplet growth condensation r* must be exceeded for a small solution droplet to become a cloud drop. Before and after the droplet reaches the critical size, it grows by diffusion of water molecules from the vapor onto its surface. Droplet growth equation: $r\frac{dr}{dt} = \frac{(S-1) - \frac{a}{r} + \frac{b}{r^3}}{F_k + F_d}$ = thermodynamic term: $\left(rac{L}{R_vT}-1 ight)rac{L ho_I}{KT}$; "-1" can be neglected ► F_k • F_d = vapor diffusion term: $\frac{\rho_l R_v T}{De_r}$. Equation (20) cannot by solved analytically. Thus, for sufficiently ute for Atm AC**ETH** large droplets it can be approximated by neglecting the solution and

curvature effects on the drop's equilibrium pressure:

Condensational growth

Ulrike Lohmann (IACETH)

(20)

Dec 7, 2005

Droplet growth condensation

Then the cloud droplet radius increases with time according to:

$$r(t) = \sqrt{r_0^2 + 2\xi t}$$
 (22)

where $\xi = (S - 1)/(F_k + F_d)$.

- ξ depends on temperature and pressure. The larger T, the lower p, the higher ξ
- ▶ The parabolic form of (22) leads to a narrowing of the drop-size distribution as growth proceeds.
- Consider 2 cloud droplets with initial radii of $r_1(0)$ and $r_2(0)$ with $r_2 > r_1$. From (22) it follows:

$$r_2(t) - r_1(t) = \frac{r_2^2(0) - r_1^2(0)}{r_2(t) + r_1(t)}$$
(23)

because the difference between the squares of the initial radii remains constant, at any time t, the difference in radii becomes smaller.

Condensational growth

Ulrike Lohmann (IACETH)

Π

Dec 7, 2005

Supersaturation 10.0% 1.0 700.0 790-0 100 đ ε Pressure in e. 01 799.0 Height 799.9 5-8 × 10⁻¹⁷ 9-3 × 10⁻¹⁶ <u>0</u> 5-8 × 10⁻¹¹ 0 × 2 10-2 100 10-10 102 Radius, µm Π FIG. 7.3. Initial formation of cloud droplets and the variation of supersaturation above cloud base. (Adapted from Mordy, 1959.) Ulrike Lohmann (IACETH) Condensational growth Dec 7, 2005

(24)

Initial cloud formation (Figure 7.3)

- peak updraft speed of 15 cm/s
- Aerosols with different mass of solute
- dashed envelop termination of these curves
- smaller drops move with air at 15 cm/s, but the larger ones fall relative to air and do not rise to same altitude
- dot-dashed line: supersaturation [%]
- all cloud droplet grow as they ascent from cloud base
- ▶ S increases, reaching a max of 0.5% at 10m above cloud base
- ▶ smallest droplets grow initially but evaporate after *S* passes
 - S_{max} ($S^* > S_{max}$ for those)
- droplets in larger categories are activated, experience rapid growth
- as they continue to grow their spread becomes narrower because of parabolic form of the growth equation

Ulrike Lohmann (IACETH) Condensational growth

Dec 7, 2005

