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P Formation of aerosols

» Gas-to-particle conversion: nucleation of aerosols from
supersaturated gases

> Bulk-to-particle conversion: wind blown dust (arid regions),
emissions of pollens and spores by plants

» Liquid-to-particle conversion: Sea salt aerosols originate from
drops ejected into the air when air bubbles in breaking waves
burst at ocean surface.

Fig. 8-12: Four stages in the production of sea salt particles by the bubble-burst mecha-
nism. (a) Film cap protrudes from the ocean surface and begins to thin. (b) Flow down
the sides of the cavity thins the film which eventually ruptures into many small fragments.
(c) Unstable jet breaks into few drops. (d) Tiny salt particles remain as drops evaporate;

> new bubble is formed. (From Day, 1965, with changes.)
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P Global Source Strength, Lifetime and Burden

Aerosol Type Flux Lifetime Burden
(Tg/yr) () (mg/m?)
Natu-  Pri- 900-1500 4 19-33
ral mary 2300 1 3
50 4 1
Sec. 70 5 2
20 10 1
(40) (400) (80)
20 5 0.6
Total 3400-4000 27-41
Anth-  Pri. 40-640 4 1-14
ropo- 14 7 0.6
E B genic 54 6 1.8
§_ Sec. 140 5 3.8
g 20 7 0.8
< Total 270-870 8-21
' Sum 3670-4870 35-62
®)] g (Source: Ramanathan et al., Science, 2001)
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Removal of aerosols

> 80%-90% of the aerosol mass is removed from the atmosphere
by precipitation particles (wet scavenging)

» prior to that aerosols serve as cloud condensation nuclei
(CCN). As these particles grow, aerosols tend to be forced onto
their surface by diffusion fields associated with the flux of water
vapor to the growing cloud droplet (diffusiophoretic force)

> precipitation particles collect aerosols by direct impaction, the
better the larger the aerosols (best for aerosols > 2 pm).

> aerosols are also removed by gravitational settling and
subsequent impaction onto obstacles on Earth’s surface (dry
deposition) which accounts for 10-20% of aerosols mass
removed from the atmosphere.
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" Dry deposition (Fig 19.3 Seinfeld&Pandis)
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' Wet deposition (Fig 20.10 Seinfeld&Pandis)
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Nucleation scavenging (Fig 17.8 Pruppacher&Klett)
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' Residence time of aerosols (Fig 8.14 Pruppacher&Klett)
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Fig. 8-14: Residence time of aerosol particles as a function of their radius. I: Small ions, A:

Aitken particles, C: from thermal diffusion of aerosol particles, R: based on radioactivity

data, P: removal by precipitation, F: removal by sedi ation. (From Jaenicke, 1978a,
1988, with changes.)
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Residence time of aerosols (Fig 8.15 Pruppacher&Klett)
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g Fig. 8-15: Residence time of aerosol particles as a function of altitude in the atmosphere.
2 (From Jaenicke, 1978¢c, 1988, based on Flohn, 1973, with changes.)
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Importance of aerosol particles (AP)

» Aerosol particles act as centers for cloud droplets and ice
particles
» Effects on pollution:

> photochemical smog (ozone)

» degradation of visibility

> winter smog (solid aerosols provide surface upon which trace
gases can be absorbed and then react, e.g. London smog)

» Effects on climate - effects on radiative transfer (direct and
indirect effect)
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! Aerosol radiative effects
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| Phase changes

Phase changes of water are basic to cloud microphysics:
vapor < liquid
liquid < solid
vapor < solid

the changes from left to right correspond to increasing molecular order.

vVVvyVvYVvYyVvyy

these transitions do not occur at thermodynamic equilibrium, but in
presence of a strong free energy barrier. l.e. for a water droplet to form by
condensation from the vapor, the surface tension must be overcome by a
strong gradient of vapor pressure.

» The Clausius-Clapeyron equation describes the equilibrium condition for a
thermodynamic system consisting of bulk water and its vapor.

=N

2 > Saturation is defined as the equilibrium situation in which the rates of

§ evaporation and condensation are equal.

s » However, for small droplets, because of the energy barrier, phase transitions

Q ™ . .

3 do not generally occur at the equilibrium saturation of bulk water.

s
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.
' Nucleation

» nucleation: Any process in which a free energy barrier must be
overcome, such as vapor to liquid or liquid to ice transitions.

» homogeneous nucleation: Cloud droplets form directly from
the vapor phase

» homogeneous nucleation requires several hundred percent
supersaturation

» instead cloud droplet form when the ascending air just reaches
equilibrium saturation, because of the presence of CCN.

» heterogeneous nucleation: Cloud droplets form on nuclei
from the vapor phase

L
[}
o
a
o
o
£
<
Py
o
2
=
k7]
£

Ulrike Lohmann (IACETH) Cloud formation Nov 30, 2005




Aerosols Aerosol removal Importance of AP Cloud formation Kelvin equation Raoult’s law Kahler curve
000 000000 ooo ocoeo ©ooooo ooo 000000

Water uptake of aerosols (Fig. 9.4 Seinfeld&Pandis)
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§ FIGURE 9.4 Diameter change of (NH,),;S0,, NH,HSO,, and H,S0, particles as a function of
2 relative humidity. D, is the diameter of the particle at 0% RH.
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Gibbs free energy (Fig. 9.5 Seinfeld&Pandis)
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Kelvin equation

» So far we have ignored the curvature effect. We introduce it by
starting from Gibbs free energy:

AG = Gdrop/et - Gpure vapor (1)

where the drop with radius r contains n molecules.

» Let Nt the initial number of molecules of vapor. After the
drop forms, number of vapor molecules is reduced to:
N, = Nt — n. Then, if g, and g; are the Gibbs free energies of
a molecule in the vapor and liquid phase:

4 3
AG = n(g — g) + 4nr’c = r

Tm(g’ —g)+ dnr’c @)

where 47r?0 is the free energy associated with an interface
with radius of curvature r and surface tension o.
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» Now evaluate, g/ - g,, the difference in Gibbs free energy per
molecule of the liquid and vapor state:

» Start from
dg = ade — sdT (3)

> with constant temperature:
dg = ade = (o) — a)de (4)

> since a, >> «y for all condition of interest to us dg = —a, de
and applying the ideal gas law of water vapor o, = R, T /e

() de es(r
y S

20 g/—gv:—avde:—RvT/ — =—R,TIn () (5)

g es(c0) € es(00)

@

o .

£ where es(c0) is the pure water vapor pressure over a flat

< . R .
E§ surface, and es(r) is the actual equilibrium partial pressure over

[0} . .
BE the liquid
<z . -
—_ = Ulrike Lohmann (IACETH) Cloud formation Nov 30, 2005
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» Define saturation ratio S = (.
es(o0)
AR, T
AG = ————"—InS + 47nr’c (6)
&7
» From % = 0. obtain Kelvin equation which says that the

vapor pressure in equilibrium is larger over a droplet with
radius r than over a bulk surface:
ex(r) = ex(o0)expl ) )
» where o is the surface tension = 0.075 N/m.
Def: Surface tension: free energy per unit surface area of the
liquid. Work per unit area required to extend the surface of
liquid at constant temperature
> net growth of droplet with radius r is e — es(r), where e is the
actual ambient vapor pressure, e — e5(r) > 0 (growth),
e — es(r) < 0 (decay).
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| Gibbs free energy (Fig. 9.10 Seinfeld&Pandis)
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FIGURE 9.10 Gibbs free energy change for formation of a droplet of radius R, from a vapor with
saturation ratio §.
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Critical radii for droplet formation in clean air:

Kahler curve
000000

20 e
fe RypwTInS ' s €sat(00) (8)
Saturation ratio | Critical radius | number of molecules
S re(pum) n
1 00 00
1.01 0.12 2.47 x 108
1.1 0.0126 2.81 x 10°
1.5 2.96 x 1073 3645
2 1.73x 1073 730
3 1.09 x 10~ 183
10 522 x 1074 20
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P Raoult’s Law

» For a plane water surface the reduction in vapor pressure due
to the presence of a non-volatile solute may be expressed:

*

e No

es(00) T )

where e* is the equilibrium vapor pressure over a solution
consisting of n, molecules of water and n molecules of solute.

» |f the vapor pressure of the solute is less than that of the
solvent, the vapor pressure is reduced in proportion to the
amount of solute present.

» For solutions in which the dissolved molecules are dissociated n

must be multiplied by the degree of ionic dissociation 7 (van't
Hoff factor).
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| Raoult’s Law
» For dilute solutions:
e* 1 n ]
——— = ———— ~1— — (Taylorseries) (10)
es(©)  n/no+1 No
» For both NaCl and (NH4)250,: i =~ 2.
» The number of effective ions in a solute of mass m is given by:
n = iNom/Ms (11)

where N, is the Avogadro’s number, and My is the molecular weight of the
solute.

» The number of water molecules in mass m,, may likewise be written as:

no = Nomy, /My, (12)
E with m,, = 4/37rr3pw, Raoult’s law can be written as:
2 e . 3imM, . b (13)
% es(00) ATMspyr3 r3
E k) where .
o) 3imM,, 43-107°im, 3
o2 = e o B ] (14)
< ’g T Pw Vs s
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Raoult’s Law (Fig. 9.3 Seinfeld&Pandis)
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FIGURE 9.3 Equilibrium partial pressures of the components of a nonideal mixture of A and B.
Dashed lines correspond to ideal behavior.
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Kohler curve

» Combination (multiplication) of Kelvin and Raoult’s equation
(evaluating it for e*(r)/es(r)) gives the Koehler curve:

e*(r b a
?E)o)) =(1- ﬁ) * exp(;), (15)

with ;
20 3.3-10"
= ~ 1
= ORT e L (16)

> For r not too small, a good approx. is (exp(2) ~ 1+ 2)

SRR ()

» 1. term: surface molecules possess extra energy
2. term: solute molecules displacing surface water molecules
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Kohler curve

Koehler curves for ammonium sulfate (dashed) and sea salt (solid)

E 5 T T 3
E " — r=0.01 pm ]
£ —r=0.03 um E
1025 R —— r=0.1 pm E
E ’ r=0.3 um E
N = ! R .oo... Kelvin curve E
@ m ' 7
y 1.01 E b 3
n = I 1
<} E ! B
B 1.00F .
g E ]
c E ! B
2 E ! ]
k) E i B
5 0.99F 1 -
k] £ ! E
ey E [ B
a E ! B
3 0.98 ? : E
£ E | B
< E ) B
§ C L 3
% 0.01 0.10 1.00 10.00
] Radius [um]
c

Ulrike Lohmann (IACETH) Cloud formation Nov 30, 2005



Aerosols Aerosol removal Importance of AP Cloud formation Kelvin equation Raoult’s law Kahler curve
000 000000 ooo 0000 ©ooooo ooo 00®000

| Kohler curve

» The critical radius r. and critical supersaturation S. are given by:

3b

re = ? (18)
433

Se = 575 (19)

> Kohler curve represents equilibrium conditions

> Large particles have large equilibrium radii and may have insufficient
times to grow to their equilibrium size in clouds with strong updrafts.

f > As the size of a droplet increases, the equilibrium vapor pressure
TR
& above its surface decreases (Kelvin's equation).
1%
o . . .
£ > The curves for droplets containing fixed masses of salt approach the
< . . . .
E 5 Kelvin curve as they increase in size, since the droplets become
O E increasingly dilute solutions.
<z == :
—_ = Ulrike Lohmann (IACETH) Cloud formation Nov 30, 2005
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P Kohler curve

» Solution effect dominates when radius is small: a very small solution
droplet is in equilibrium with the vapor at RH less 100%. If RH is increased
a small amount, droplet will grow until it reaches equilibrium one again.

> If droplet grows beyond r., its equilibrium saturation ratio falls below S..
Consequently vapor will diffuse to the droplet and it will continue to grow
without the need for further increase in the ambient saturation ratio —
activated drop. l.e. drops for which supersaturation in the atmosphere is
larger than S¢ can be activated.

> If cloud droplet is not activated and grows slightly, then supersaturation of
air adjacent to drop needs to be higher than that of ambient air to
maintain that state. Since it isn't drop will shrink again and vice versa.

> general conclusion: the higher the supersaturation, the more and the

(%)

E- .

ko smaller CCN can be activated.

o

§ » smaller aerosols would need larger saturation ratios than exist in the free
Ee atmosphere

o . .
) = > larger aerosols serve easier as CCN, but are much fewer in number
<z
_= Ulrike Lohmann (IACETH) Cloud formation Nov 30, 2005
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| Activity spectrum

» number of aerosols per unit volume that are activated to
become cloud droplet, expressed as a function of
supersaturation

» Measure CCN in chamber where S can be fixed. Usually
evaluate the range from 0.3% to 1%.

» Activated nuclei are called CCN. Subset of total aerosols
population that can account for formation of natural clouds.

» CCN are always present in the atmosphere in ample
concentration . Clouds form whenever there is vertical air
motion and sufficient moisture

> in atmosphere S < a few %.

» The nucleus counts may often be approximated by the
power-law relation:
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F Example of an activation spectrum

1000
k

R CCN = C-S* (20

ﬂ.g 100 -

-g CCN=cloud

g condensation nuclei

g

g 3 > in marine air:

2 _ -3

§ —se— Florida cont (SCMS) C = 30-300 cm '

Florid: [SCMS)
5 K T E.c:(l:n.i'i‘sr!ont(AS'TEX) k:0 . 3_ 1
. - --am- E. Atlantic mar(ASTEX) J
—et-+ Southern Ocean(ACE 1) . . .
—f— Eastem Pacific(FIRE 1) > in continental air:
—pr— Arctic noncloudy(SHEBA)
T ASTEX,very cloudy C = 300-3000
—ef— FIRE 1, very coudy _3
0.1 ! cm
0.01 0.1 1

soh k=0.2-2
[Hudson and Yum, JGR, 2002]
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