> jackals <- read.table("http://stat.ethz.ch/Teaching/Datasets/jackals.dat", header=T) > jackals M W 1 120 110 2 107 111 3 110 107 4 116 108 5 114 110 6 111 105 7 113 107 8 117 106 9 114 111 10 112 111 > t.test(jackals$M, jackals$W) Welch Two Sample t-test data: jackals$M and jackals$W t = 3.4843, df = 14.894, p-value = 0.00336 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 1.861895 7.738105 sample estimates: mean of x mean of y 113.4 108.6 > t.test(jackals$M, jackals$W, var.equal=T) Two Sample t-test data: jackals$M and jackals$W t = 3.4843, df = 18, p-value = 0.002647 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 1.905773 7.694227 sample estimates: mean of x mean of y 113.4 108.6 > # Was soll die Ausgabe > # 95 percent confidence interval: > # 1.905773 7.694227 > # Woher kommen die Werte? > # Wir hatten 2.101 (bzw. 1.734 einseitig) als Grenze > wilcox.test(jackals$M, jackals$W) Wilcoxon rank sum test with continuity correction data: jackals$M and jackals$W W = 87.5, p-value = 0.004845 alternative hypothesis: true mu is not equal to 0 Warnmeldung: cannot compute exact p-value with ties in: wilcox.test.default(jackals$M, jackals$W) > # Was bedeutet die Warnung? > # e) > # erübrigt sich da H_A immer true, würden jedoch Wilcoxon-Test, da dies nach Bühlmann > # der beste Test sei (Beweis durch Autorität;-), Skript Seite: 47). >