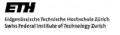
Kapitel 4: Staatliche Eingriffe


Kapitel im Lehrbuch / Inhalt

- Im Perman:
 - Kapitel 6: "Pollution Control: Targets"
 - Kapitel 7: "Pollution Control: Instruments"
- Inhalt der Vorlesung:
 - Typen von Staatseingriffen
 - Effizientes Niveau an Verschmutzung
 - Steuern vs. Zertifikate
 - Command and Control Instrumente

Einführung

- Vorheriges Kapitel: Internalisierung von (Umwelt-) Externalitäten durch...
 - den Staat (Pigou-Steuer)
 - oder private Verhandlungen (Coase-Theorem)
- Tatsächlich gibt es eine Vielzahl weiterer Formen von staatlichen Eingriffen, um Umweltexternalitäten zu korrigieren...

Ressourcen- und Umweltökonomie

Prof. Dr. L. Bretschger

2

Typen von Staatseingriffen

- Kampagnen
- Direkte Produktion von Umweltqualität
- Verschmutzungsverhinderung
- Command and Control Regulierungen
- Ökonomische Anreize

Kampagnen

 Versuch das Verhalten der Individuen zu beeinflussen, ohne verbindliche Verhaltensregeln aufzustellen.

Ressourcen- und Umweltökonomie

Prof. Dr. L. Bretschger

5

Direkte Produktion von Umweltqualität

- Einrichten von Naturschutzgebieten
- Abwasserreinigung
- Belüftung von sauerstoffarmen Seen (z.B. Sempachersee)

Verschmutzungsverhinderung

- Anstatt sich sich auf eine Internalisierung von Umweltexternalitäten zu beschränken, kann der Staat helfen, die der Verschmutzung zugrundeliegenden Technologien gleichzeitig umweltfreundlicher und profitabler zu machen.
- Zusammenarbeit bei der Entwicklung umweltschonender Technologien zwischen Universitäten und Privatfirmen.
- Stipendien/Fördergelder für Forschung und Projekte im Umweltbereich.

Ressourcen- und Umweltökonomie

Prof. Dr. L. Bretschger

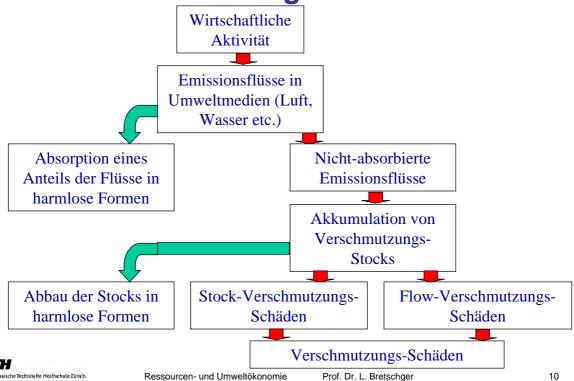
7

Command and Control-Instrumente

- Command and Control-Regulierung umfasst das setzen von Standards.
 - Ein Standard erfordert eine gesetzlich vorgeschriebene Leistung durch die Firmen
 - Ein Standard macht übermässige Verschmutzung kurzerhand illegal
- Der Gesetzgeber sollte versuchen, das optimale Niveau an Verschmutzungskontrolle zu setzen

Ökonomische Anreize

- Ökonomische Anreize werden so gesetzt, dass individuelle Optimierung mit dem sozialen Optimum übereinstimmt.
- Beispiele:
 - Handelbare Verschmutzungszertifikate
 - Verschmutzungsbesteuerung, Umweltsubventionen
 - Pfandsysteme
 - Haftungsregelungen



Ressourcen- und Umweltökonomie

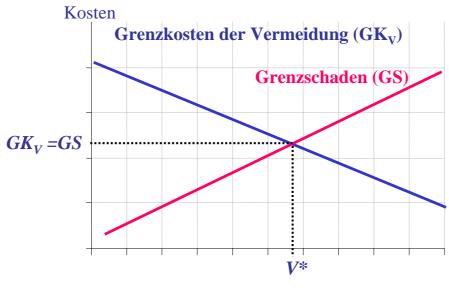
Prof. Dr. L. Bretschger

9

Wirtschaftliche Aktivität und Umweltverschmutzung

Effizientes Niveau an Verschmutzung

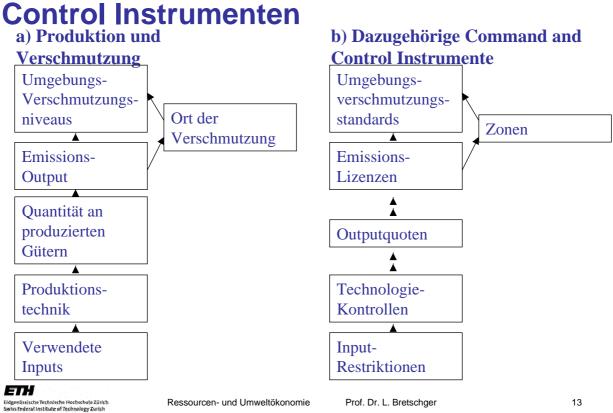
- Verschmutzung ist schädlich: Ist also ein Verschmutzungsniveau von Null wünschenswert?
- Aber: Verschmutzung kann auf nützlich sein:
 - Produktion von Gütern und Dienstleistungen ist oft unmöglich ohne Verschmutzung in irgend einer Form zu generieren.
 - Allgemein: Güter könnten mit fast keiner Verschmutzung produziert werden, aber dies zu prohibitiv hohen Kosten.

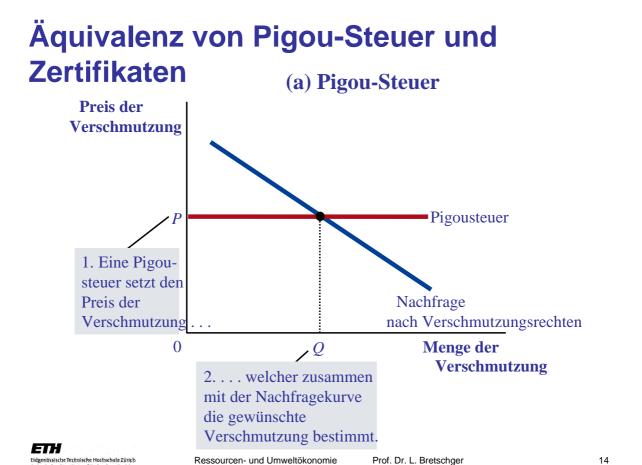


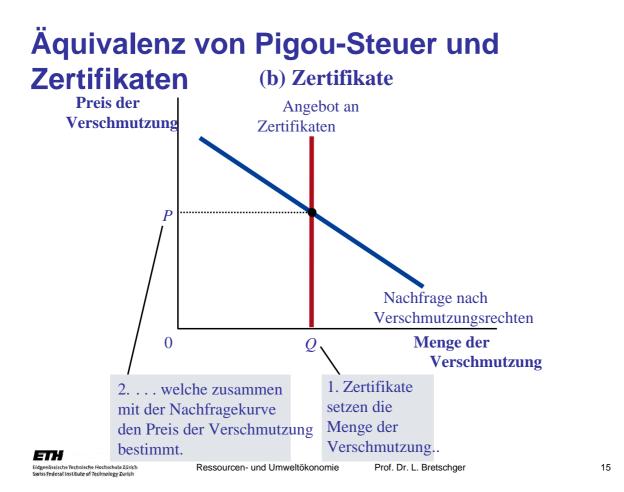
Ressourcen- und Umweltökonomie

Prof. Dr. L. Bretschger

11


Optimale Verschmutzungsmenge




Verschmutzungsmenge

Klassifizierung von Command and

Typen von Standards: Umgebungsstandards

- Reguliert die Menge eines Stoffes in der umliegenden Umwelt z.B. einer Fabrik
- Beispiele:
 - Parts per Million gelöster Sauerstoff in einem Fluss
 - Ozonkonzentration in Bodennähe

Typen von Standards: Emissionsstandards

- Reguliert das Niveau an erlaubten Emissionen
- Beispiele:
 - Emissionsraten (Kilogramm SO2 pro Stunde)
 - Totale ausgestossene Menge an Schadstoffen
 - Restmenge an Schadstoffen pro Einheit Output (Schwefelgehalt von Kohle)
- Emissionsstandards garantieren kein Bestimmtes Niveau an Umgebungsverschmutzung!
 - Wetterverhältnisse haben einen Einfluss auf Schadstoffkonzentration in der Umgebung
 - Menschliches Verhalten beeinflusst Verschmutzungsniveau

Ressourcen- und Umweltökonomie

Prof. Dr. L. Bretschger

17

Typen von Standards: Technologiestandards

- Bei Emissionsstandards: Verschmutzungslevel wird festgelegt. Technologie, mit der das Level erreicht wird ist egal.
- Technologiestandards: Verlangen von Verschmutzern bestimmte Technologien, Praktiken oder Produktionsprozesse zu verwenden.
- Beispiele:
 - Verwendung von Katalysatoren in Motorfahrzeugen.
 - Verwendung von bleifreiem Benzin für Motorfahrzeuge (Inputauflage)

Ökonomische Analyse von Command and Control Instrumenten I

• Festlegung der Standards:

- Auf welchem Niveaus sollen die Standards gesetzt werden?
- Aus Effizienzsicht: Grenzvermeidungskosten = Grenzschäden
- Aber: Schwierig die "richtigen" Kostenkurven zu ermitteln

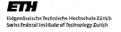
• Einheitliche Standards:

Sollen überall die gleichen Standards gelten, oder sollten sie z.B. regional unterschiedlich festgelegt werden?

Ressourcen- und Umweltökonomie

Prof. Dr. L. Bretschger

19


Ökonomische Analyse von Command and Control Instrumenten II

- Innovationsanreize: Command and Control-Regulierung schafft nur geringe Innovationsanreize. Sobald die Firma die vorgeschriebenen Grenzen erreicht hat, hat sie keine weiteren Anreize zur Innovation.
- Durchsetzung: Selbstkontrolle vs. externe Kontrolle. Je nachdem sind z.B. technische Normen einfacher zu kontrollieren als Emissionsniveaus

Ökonomische Analyse von Command and Control Instrumenten III

• *Kostenminimierung:* Wenn verschiedene Firmen unterschiedliche Grenzvermeidungskosten haben führen Command and Control Instrumente *nicht* zu einer Minimierung der gesamtwirtschaftlichen Vermeidungskosten!!

Ressourcen- und Umweltökonomie

Prof. Dr. L. Bretschger

21

Firmen mit unterschiedlichen Grenzvermeidungskosten

➤ Zwei Firmen mit unterschiedlichen
 Vermeidungskostenfunktionen.
 → Staat will Verschmutzung um 40 Einheiten senken.
 → Also: Beiden Firmen wird Verschmutzungsreduktion von 20 Einheiten vorgeschrieben
 MC_B = 3Z_B
 MC_A = 3Z_A

Pollution abatement Bei Command and Control Regulierung und unterschiedlichen Grenzvermeidungskostenfunktionen: Unterschiedliche Grenzkosten bei verschiedenen Firmen. Kosteneffizient wären gleiche Grenzkosten!

Die Rolle von Command and Control Politikmassnahmen

- Obwohl Command and Control Instrumente (im Gegensatz zu ökonomischen Anreizen) nicht zu einem Ausgleich der Vermeidungsgrenzkosten führen, kann ihr Gebrauch in bestimmten Fällen vorteilhaft sein:
- 1. Wenn Überwachungskosten hoch sind
- 2. Wenn das Optimale Emissionsniveau Null oder nahe Null ist
- 3. Bei zufälligen Ereignissen und Notfällen, welche das Verhältnis zwischen Emissionen und Schäden ändern

Ressourcen- und Umweltökonomie

Prof. Dr. L. Bretschger

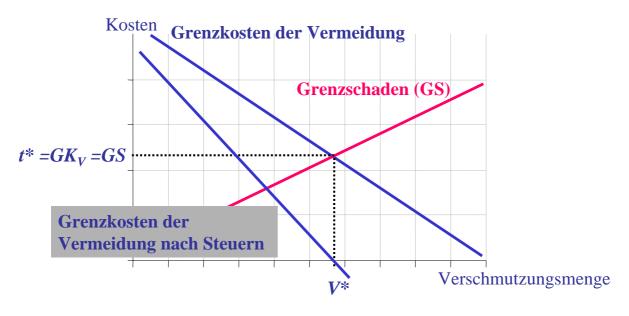
23

Ökonomische Anreize

- Aus Sicht der Ökonomie sind ökonomische Anreize Command and Control Instrumenten (meistens) überlegen. Weil:
 - 1. Sie minimieren die gesamtwirtschaftlichen Vermeidungskosten indem sie Grenzvermeidungskosten zwischen Produzenten ausgleichen.
 - 2. Es werden Anreize geschaffen mehr Forschung und Entwicklung zur Vermeidung von Umweltschäden zu betreiben und Alternativen zu den Aktivitäten, welche Verschmutzung verursachen zu suchen

Emissionsbesteuerung

- Steuern funktionieren durch die Modifikation relativer Preise.
- Können sowohl auf das Niveau von Inputs (z.B. Kohle), als auch auf Verschmutzungsniveaus erhoben werden.
- Subventionen können analog modelliert werden.



Ressourcen- und Umweltökonomie

Prof. Dr. L. Bretschger

25

Einfluss einer Emissionsbesteuerung auf Grenzvermeidungskosten

Firmen mit unterschiedlichen Grenzvermeidungskosten

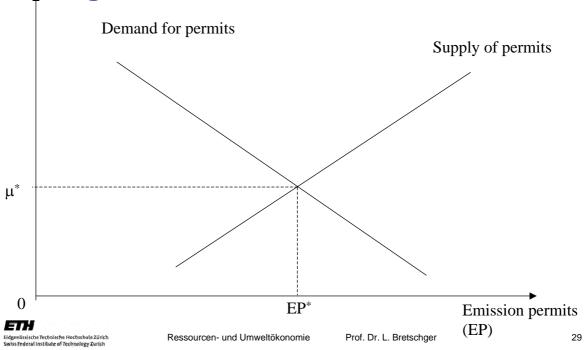
Zwei Firmen mit unterschiedlichen
 Vermeidungskostenfunktionen.
 Staat will Verschmutzung um 40 Einheiten senken.
 Staat setzte einen Grenzsteuersatz von 75 auf die Verschmutzung
 MC_B = 3Z_B
 MC_A = 3Z_A

Firmen reduzieren ihre Verschmutzung so lange, die
Grenzvermeidungskosten dem Steuersatz entsprechen. Führt zu
Minimierung der totalen Vermeidungskosten!

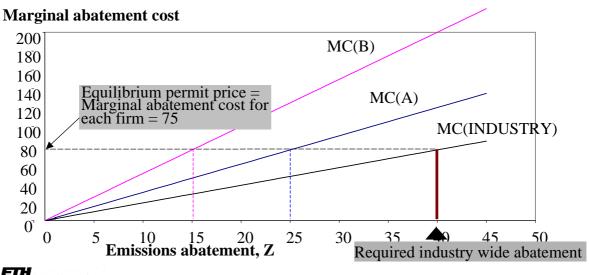
idgenössische Feshalsche Hochschale Zürich iwiss Federal Institute of Technology Zurich

Ressourcen- und Umweltökonomie

Prof. Dr. L. Bretschger


27

Handelbare Verschmutzungszertifikate


- Die Einführung von handelbaren Verschmutzungszertifikaten benötigt:
 - Eine Entscheidung betreffend der erlaubten totalen Verschmutzungsmenge.
 - Eine Regel, welche es Firmen verbietet mehr Schadstoffe auszustossen, als durch ihre Zertifikate erlaubt ist.
 - Eine Regel, wie die totale Menge an Zertifikaten am Anfang unter den Firmen verteilt wird.
 - Eine Garantie, dass Zertifikate frei zwischen Firmen gehandelt werden können.

Marktpreis für Verschmutzungszertifikate: Freie Anfangsallokation

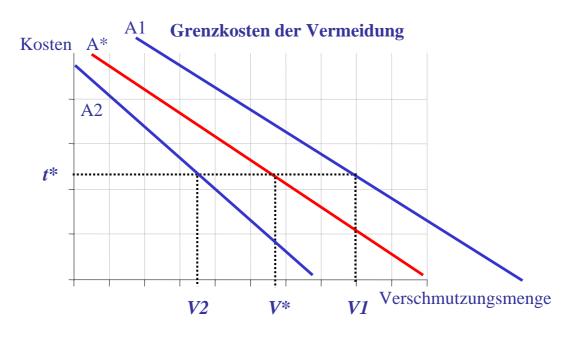
Effiziente Vermeidung von Verschmutzung: Zwei Firmen und handelbare Zertifikate

Vorteile der verschiedenen Instrumente: Kosteneffizienz

- Emissionssteuern und handelbare Zertifikate können ein gegebenes Niveau an Vermeidung von Schadstoffen zu den tiefsten Kosten herbeiführen.
- Bei Command and Control Instrumenten ist dies nur möglich, wenn der Staat gemäss den Vermeidungskostenkurven der einzelnen Firmen jeweils *individuell* den optimalen Steuersatz setzt.
- Aber: Kosten für Überwachung, Administration und Durchsetzung sind hier nicht berücksichtigt.

Ressourcen- und Umweltökonomie

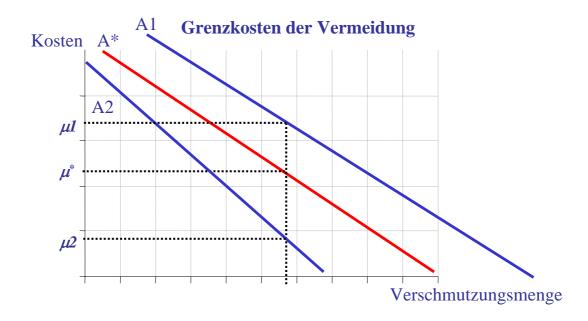
Prof. Dr. L. Bretschger


21

Vorteile der verschiedenen Instrumente: Verlässlichkeit des Kontrollinstruments

- Hängt vor allem davon ab, wie viele Informationen die Regulierungsbehörde besitzt
- Bei vollständiger Information sind führen sowohl eine Emissionsbesteuerung, als auch handelbare Zertifikate zu identischen Resultaten.
- Eine Fehleinschätzung der Grenzvermeidungskostenkurve hat aber unterschiedliche Auswirkungen.

Unvollständige Information über die Vermeidungskostenkurve: Steuern


ETT# Eidgenössische Fezholsche Hochschale Zürich Swiss Federal Institute of Technology Zurich

Ressourcen- und Umweltökonomie

Prof. Dr. L. Bretschger

33

Unvollständige Information über die Vermeidungskostenkurve: Zertifikate

Vorteile der verschiedenen Instrumente: Informationsvoraussetzungen

Ökonomische Anreize haben hier einen fundamentalen Vorteil gegenüber Command and Control Instrumenten!

Ressourcen- und Umweltökonomie

Prof. Dr. L. Bretschger

35

"Kostenlose" Erreichung von Umweltzielen

- Unter Umständen ist es möglich, Umweltziele kostenlos oder sogar zu "negativen" Kosten zu erreichen.
- Dies kann der Fall sein aufgrund von:
 - Eliminierung von technischen und ökonomischen Ineffizienzen im energieproduzierenden/- verwendendem Sektor.
 - Herbeiführung von technologischem Wandel.
 - Erreichen von positiven Nebeneffekten.
 - Doppelte Dividenden.

Erreichen von positiven Nebeneffekten

- Umweltreformen können eine ganze Reihe an positiven Nebeneffekten zur Folge haben.
- Beispiel Reduktion von Treibhausgasen:
 - Der Haupteffekt ist die Reduktion der Klimaerwärmung.
 - Die Reduktion des Treibhausgasausstosses ist aber auch verbunden mit einer Reduktion von weiteren Schadstoffen (wie Russpartikel, Kohlenmonoxid etc.)
 - Dies wiederum hat positive Auswirkungen auf die Gesundheit.

Ressourcen- und Umweltökonomie

Prof. Dr. L. Bretschger

37

Doppelte Dividenden

- Idee der Theorie der doppelten Dividenden: Steuereinnahmen einer Emissionsbesteuerung können verwendet werden um den Grenzsteuersatz anderer Steuern zu senken.
- Wenn diese Steuern einen verzerrenden Effekt haben, hat dies einen effizienzsteigernden Effekt.
- So erreicht man eine Umweltverbesserung *UND* eine Effizienzsteigerung der gesamten Volkswirtschaft.

