Vorlesung 752-4001-00 Mikrobiologie WS 04/05 Biochemische Diversität: C-Zyklus

J. Zeyer Institute of Terrestrial Ecology ETH Zurich

22. Nov. 2004

Topics

- 1. Overview: Photosynthesis, mineralization and storage
- 2. Energy turnover and biochemistry of photosynthesis
- 3. Energy turnover and biochemistry of mineralization
- 4. Storage of assimilated carbon (Humus, Oil, etc.)
- 5. Case study I: CO₂ cycle and global climate
- 6. Case study II: Methane oxidation in the subsurface
- 7. Varia

Photosynthesis, mineralization and carbon storage CO₂ + H₂O Photosynthesis CH₂O + O₂ Mineralization Stored carbon (e.g. humus, fuel)

Redox values of microbiologically important reactions Redox pair E₀' (Volt) -0.43 -0.41 -0.39 CO₂/formate Ferredoxin ox/red NAD+/NADH -0.32 -0.27 Sº/HS -0.24 +0.033 CO₂/CH₄ Fumarate2-/succinate2 Fu(OH)₃ + HCO₃/FeCO₃ NO₂/NO NO₃/NO₂· Fe³⁺/Fe²⁺ Mn⁴⁺/Mn²⁺ +0.20 +0.36 +0.43 +0.77 +0.798 +0.82 +1.18 +1.36 O₂/H₂O NO/N₂O N_2O/N_2 ΔG^{0} = -nF * ΔE_0 (F = Faraday constant, 96.48 kJ / Volt) $\Delta G' = \Delta G^{0'} + RT * In ([Products]/[Substrates])$

Topics

- 1. Overview: Photosynthesis, mineralization and storage
- 2. Energy turnover and biochemistry of photosynthesis
- 3. Energy turnover and biochemistry of mineralization
- 4. Storage of assimilated carbon (Humus, Oil, etc.)
- 5. Case study I: ${\rm CO_2}$ cycle and global climate
- 6. Case study II: Methane oxidation in the subsurface
- 7. Varia

Topics

- 1. Overview: Photosynthesis, mineralization and storage
- 2. Energy turnover and biochemistry of photosynthesis
- 3. Energy turnover and biochemistry of mineralization
- 4. Storage of assimilated carbon (Humus, Oil, etc.)
- 5. Case study I: CO₂ cycle and global climate
- 6. Case study II: Methane oxidation in the subsurface
- 7. Varia

Mineralization of organic C-compounds

Topics

- 1. Overview: Photosynthesis, mineralization and storage
- 2. Energy turnover and biochemistry of photosynthesis
- 3. Energy turnover and biochemistry of mineralization
- 4. Storage of assimilated carbon (Humus, Oil, etc.)
- 5. Case study I: CO₂ cycle and global climate
- 6. Case study II: Methane oxidation in the subsurface
- 7. Varia

Pools	Quantity (Gt)		
Atmosphere	720		
Oceans	38,400		
Total inorganic	37,400		
Surface layer	670		
Deep layer	36,730		
Total organic	1,000		
Lithosphere Sedimentary carbonates Kerogens	>60,000,000 15,000,000		
Terrestrial biosphere (total)	2,000		
Living biomass	600 – 1,000		
Dead biomass	1,200		
Aquatic biosphere	1–2		
Fossil fuels	4,130		
Coal	3,510		
Oil	230		
Gas	140		
Other (peat)	250		

Carbon pools in the major reservoirs on earth

Source: SCIENCE 290(13), 291 - 296, 2000

Estimated Turnover Time of Soil Carbon Based on Mean Carbon Pools and Mean Soil Respirations Rates

Vegetation type	Soil C (t ha -1)	Soil respiration (t ha -1)	Turnover (years)
Tundra	204	0.6	490
Boreal forests	206	3.2	91
Temperate grasslands	189	4.4	61
Temperate forests	134	6.6	29
Woodlands	69	7.1	14
Cultivated lands	79	5.4	21
Desert scrub	58	2.2	37
Tropical grasslands	42	6.3	10
Tropical lowland forests	287	10.9	38
Swamps and marshes	723	2.0	520
Global total	15 x 108	5 x 10 ⁷	32

a) Turnover time is estimated based on the assumption that 30 % of soil respiration is derived from root respiration.

Source: Soil Microbiology and Biochemistry, 2nd ed., by E.A. Paul and F.E. Clark, Academic Press, 1996

Siberian Peatlands a Net Carbon Sink and Global Methane Source Since the Early Holocene

Science, Vol. 303, 353 - 356, 2004

Topics

- 1. Overview: Photosynthesis, mineralization and storage
- 2. Energy turnover and biochemistry of photosynthesis
- Energy turnover and biochemistry of mineralization
- Storage of assimilated carbon (Humus, Oil, etc.)
- Case study I: ${\rm CO_2}$ cycle and global climate
- Case study II: Methane oxidation in the subsurface
- Varia

EOS 84(46), 2003

Satellite data help predict terrestrial carbon sinks Potter et al., EOS Vol. 84(46), 2003

MODIS:

Moderate Resolution Imaging Spectroradiometer Sensor aboard NASA's TERRA and AQUA satellites

Balance:

Net primary production (NPP)
- Soil microbial CO₂ fluxes

Net ecosystem production (NEP)

Terrestrial NPP for the globe: Around 50 Pg C / year (Trend: increasing!)

Seasonal patterns:

Very pronounced for 30° – 60° North
In summer positive NEP
In winter negative NEP

Topics

- 1. Overview: Photosynthesis, mineralization and storage
- 2. Energy turnover and biochemistry of photosynthesis
- Energy turnover and biochemistry of mineralization
- Storage of assimilated carbon (Humus, Oil, etc.)
- Case study I: CO₂ cycle and global climate
- Case study II: Methane oxidation in the subsurface

Major microbial activities in soil involving gaseous species

Mineralization	CH ₂ O	+	02	->	CO2	
Denitrification	NO ₃ -			->	N ₂ (N	I ₂ O)
Nitrification	NH ₄ +	+	02	->	NO ₃ - (N	₂ O)
Methanogenesis	CO ₂	+	H ₂	->	CH ₄	
	CH₃COOH	I		->	CH ₄	+ CO ₂
Methane oxidation	CH ₄	+	02	->	CO2	

Rough estimates of CH₄ released into the atmosphere (units: 1012 g/year)

Total	350	-	820	
Biogenic (81 - 86% of total)	302	-	665	
Ruminants	80	-	100	
Termites	25	-	150	
Paddy fields	70	-	120	
Natural wetlands	120	-	200	Microbial
Landfills	5	-	70	oxidation
Oceans and lakes	1	-	20	reduces
Tundra	1	-	5	flux!
Abiogenic (14 - 19% of total)	48	-	155	
Coal mining	10	-	35	
Natural gas flaring and venting	10	-	30	
Industrial and pipeline losses	15	-	45	
Biomass burning	10	-	40	
Methane hydrates	2	-	4	
Volcanoes		0.5		
Automobiles		0.	5	

Experimental approaches to determine metabolism and fluxes of trace gases in soil

Basic concept of a gas push-pull test (GPPT) (PPT successfully applied in groundwater!)

Topics

- 1. Overview: Photosynthesis, mineralization and storage
- 2. Energy turnover and biochemistry of photosynthesis
- 3. Energy turnover and biochemistry of mineralization
- 4. Storage of assimilated carbon (Humus, Oil, etc.)
- 5. Case study I: CO₂ cycle and global climate
- 6. Case study II: Methane oxidation in the subsurface
- 7. Varia