Ionische Bindung: Bindung zwischen Metall- & Nichtmetallatomen durch Elektronentransfer

Koordinationszahl: Anzahl der nächsten (entgegengesetzt geladenen) Nachbarionen (normal: 4, 6 oder 8) Kristallgitter: Durch resultierenden Anziehungskräft geordnete Ansammlung von Kationen und Anionen Benötigte Energie um 1 mol einer ionischen Verbindung vollständig in die gasförmigen Gitterenthalpie:

Ionen zu trennen. Bsp. NaCl (s) \rightarrow Na⁺ (g) + Cl⁻ (g) $\Delta_{Gitt}H = 788 \text{ KJ} / \text{mol}$

Metallbindung: Bindung zwischen Metallatomen. Die Atomrümpfe sind unbeweglich während sich die

Valenzelektronen sehr beweglich irgendwo zwischen den Atomrümpfen befinden

Bindung zwischen Nichtmetallatomen mittels Elektronenpaare als gemeinsame Bindung **Kovalente Bindung:**

Valenzbindungstheorie: Die Edelgaskonfiguration als Ziel für jedes Atom, also ein elektronisches Oktett

Valenzstrich-Formel: Die Bindungen werden mit Strichen gekennzeichnet. (Bsp. H−C≡C−H) Isomerie: 1 Substanzformel, aber mehrere Valenstrichformeln, also mehrere Substanzen

Mesomerie: Ein Molekül ist durch mehrere Formeln beschreibbar. Die Formeln sind Grenzstrukturen

Das VSEPR-Modell: (Valenzschalen-Elektronenpaar-Abstossungs-Theorie)

- Die Elektronenpaare um das Zentralatom nehmen eine räumliche Anordnung ein, welche die Abstossung zwischen ihnen zu einem Minimum macht
- Die Stärke der Abstossungskräfte zwischen den Paaren nimmt in folgender Reihe ab: freies EP / freies EP > freies EP / gebundenes EP > gebundendes EP / gebundenes EP
- Unter mehreren möglichen Strukturen mit 90° Wechselwirkungen ist die Struktur begünstigt, welche die kleinste Anzahl 90° Wechselwirkungen mit freien Elektronenpaaren aufweist.

Für Moleküle mit mehr als 6 EP's sind die Regeln nur noch beschränkt anwendbar.

Vorgehen:		K = 2:	linear	Beispiele:
1.	Festlegen des Zentralatoms	K = 3:	trigonal planar	SO ₂ : Partner = 2, freie EP's = $1 \Rightarrow K=3$
2.	Anzahl Partner um das Zentralatom	K = 4:	tetraedrisch	$AsCl_4$: Partner = 4, freie EP's = 0 \Rightarrow K=4
3.	Freie Elektronenpaare am Zentralatom	K = 5:	tri. bipyramidal	IBr_2 : Partner = 2, freie EP's = 3 \Rightarrow K=5
4.	Partner + freie EP's = Koordinationszahl	K = 6:	oktaedrisch	$\mathbf{S} \mathbf{b} \mathbf{Cl}_{6}^{+}$: Partner = 6, freie EP's = 0 \Rightarrow K=6

LCAO-Ansatz: Linearkombination von Atomorbitalen

Atomorbital: Zeigt die Wahrscheinlichkeit, ein Elektron in der Umgebung des Atomkerns anzutreffen

Molekülorbital: Zeigt die Aufenthaltswahrscheinlichkeit des Elektrons um das Molekül herum an

bindende Orbitale: Energieärmere Molekülorbitale als die ursprünglichen Atomorbitale antibindende Orbitale: Energiereichere Molekülorbitale als die ursprünglichen Atomorbitale nichtbindende Orbitale: Molekülorbitale mit gleicher Energie wie die ursprünglichen Atomorbitale

s und s* Orbitale: (Bsp. Das H₂-Molekül)

Bindungsachse: Kernverbindungslinie. Bei Drehung um die Bindungsachse ändert sich die Überlappung der

Orbitale nicht. σ-Bindungen (Einfachbindungen) sind frei gegeneinander drehbar.

σ - Orbital: Bindendes Orbital. Doppelt besetztes Orbital in einem Molekül.

σ*- Orbital: Antibindendes Orbital. Leeres Orbital in einem Molekül.

Hybridisierung von Orbitalen: (Bsp. Das CH₄-Molekül)

Grundzustand des C-Atoms Promoviertes C-Atom Hybridisiertes C-Atom \uparrow \uparrow . \uparrow \uparrow \uparrow 2p 2p \uparrow \uparrow \uparrow \uparrow 2s2s $\uparrow\downarrow$ $\uparrow\downarrow$ 1s

Mehrfachbindungen:

- Um die planare Geometrie an C=C Doppelbindungen zu beschreiben, verwenden wir sp²-Orbitale. Das übrig gebliebene p-Orbital beschreibt eine π -Bindung.
- In der C=C Doppelbindung bedeutet ein Strich eine C-C σ -Bindung, der andere eine π -Bindung.
- π -Bindungen können nicht frei gedreht werden.
- Die Bindungsenergien von σ -Bindungen sind grösser als diejenigen entsprechender π -Bindungen. Wegen der geringeren Bindungsenergie von π -Bindungen sind Doppelbindungen Schwachstellen in einem Molekül. Dort finden die meisten Reaktionen statt.
- Dreifachbindungen beschreiben wir als Überlagerung einer σ-Bindung mit zwei π-Bindungen. Die Bindungsenergien der beiden π -Bindungen sind ähnlich der "normalen" π -Bindung.