Oxidationszahl = Ladung, die ein Atom hätte, wenn die bindenden Elektronenpaare dem gänzlich elektronegativeren Atom zugeteilt werden würde.

- Elemente haben OZ = Null $(Fe^0, Cu^0, O_2^0, Cl_2^0)$ Ionen oder Salze OZ = K = Ionenladung $(Na^{+I}Cl^{-I}, Al_2^{+III}O_3^{-II})$
- Summe in einem Molekül OZ = Null
- Summe im Komplexion OZ = K
- Wasserstoff H: OZ = +I (Ausnahmen: Ionische Verbindungen wie $Na^{+I}H^{-I}$)
- (Ausnahmen: $H_2^{+I}O_2^{-I}$, $O^{-II}F_2^{+I}$) Sauerstoff O: OZ = -II
- (Ausnahmen: Komplexionen) Halogene OZ = -I
- Das am wenigsten metallische Element erhält die negative OZ (oben rechts im PS)
- Bei chemischen Reaktionen bleibt die OZ erhalten

Redoxpaare:

<u>Beispiel:</u> Verbrennen von Methan $C^{-V}H_4^{+I} + O_2^{0} --> C^{+iV}O_2^{-II} + H_2^{+I}O^{-II}$

8 e CH₄ wird oxidiert. Es ist ein Reduktionsmittel. O_2^0 $2 O_2^{-II}$ red: O₂ wird reduziert. Es ist ein Oxidationsmittel.

 CO_2 CH_4 2 H₂O Redox:

Galvansches Element (Batterie):

Beispiel: Eisen-Kupfer Batterie

- 1. Das Fe⁰- Atom löst sich als Fe^{+II}-Ion ab, lässt als o 2 e⁻ zurück
- 2. 2 e wandern durch den Leiter zum Cu-Blech
- 3. Auf dem Cu Blech herrscht e Überfluss: Cu^{+II}_(aa) werden angezogen, entladen und als Cu⁰ angelagert
- SO₄²-(aq) geht durch Membran und vereinigt sich mit dem Fe^{+II}

Elektroden: Bezeichnung für die beiden über Draht miteinander verbundenden Metallbleche.

Primaärelemente: Die Energie ist in den Elektroden enthalten und durch Redoxreaktion wird Strom erzeugt Galvanische Elemente durch die sich mit Zufuhr elektrischer Energie die chemis chen Sekundärelemente:

Vorgänge umkehren lassen (Laden der Batterie).

Brennstoffzellen: Der Brennstoff wird den Elektroden kontinuierlich zugeführt.

Standard-Elektronenpotenziale: $E_{Zelle} = E_{Ox} + E_{Red}$ Redoxpotential:

 Fe^{+II} Fe⁰ OX: - 0.41 V Fe- Blech ist Anode Cu^0 Cu^{+II} - 0.34 V Cu- Blech ist Kathode 2 e $Fe^{+II} \\$ Fe^0 $Cu^{^{+II}}$ Cu^0 - 0.75 V Redox: +

Ein grosses positives Standard Reduktionspotential bedeutet, dass sich die Substanz leicht reduzieren lässt.

Zusammenhang Elektrische Ladung - Freie Enthalpie - Gleichgewichtskonstante

 $\Delta G = n * E * F = R * T* ln K$ n = Anzahl übertragener e F = Faraday-Konstante = 96500 C / mol

Galvanische Zellen nicht im Standardzustand:

 $O = \{Fe^{+II}\} / \{Cu^{+II}\} = meist 1$ $E = E^{\circ} - \lg Q * ((2.3 * R * T) / (z * F))$ Bei 25 °C: $E = E^{\circ} - \lg Q * (0.0591 / z)$

Zusammenhang Elektrische Ladung - Stoffumsatz

 $1 e^{-} = 1.6 * 10^{-19} C$ Q = I * t $1 \text{mol} = 6 * 10^{23} \text{ e}^{-} = 96500 \text{ C} = 1 \text{ Farad}$ Q = Ladungsmenge in Coulomb